1
|
Mirshekar M, Zadeh RG, Moghadam MT, Shahbazi S, Masjedian Jazi F. Upregulation of pmrA, pmrB, pmrC, phoQ, phoP, and arnT genes contributing to resistance to colistin in superbug Klebsiella pneumoniae isolates from human clinical samples in Tehran, Iran. New Microbes New Infect 2024; 59:101275. [PMID: 38681955 PMCID: PMC11047284 DOI: 10.1016/j.nmni.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Background Antibiotic resistance in Klebsiella pneumoniae isolates, particularly resistance to colistin, has become a growing concern. This study seeks to investigate the upregulation of specific genes (pmrA, pmrB, pmrC, phoQ, phoP, and arnT) that contribute to colistin resistance in K. pneumoniae isolates collected from human clinical samples in Tehran, Iran. Methods Thirty eight K. pneumoniae isolates were obtained and subjected to antibiotic susceptibility testing, as well as evaluation for phenotypic AmpC and ESBL production according to CLSI guidelines. The investigation of antibiotic resistance genes was conducted using polymerase chain reaction (PCR), whereas the quantification of colistin resistance related genes expressions was performed via Real-Time PCR. Results The highest and lowest antibiotics resistance were observed for cefotaxime 33 (86.8%) and minocycline 8 (21.1%), respectively. Twenty-four (63.2%) and 31 (81.6%) isolates carried AmpC and ESBLs, respectively. Also, antibiotic resistance genes containing blaNDM, blaIMP, blaVIM, blaSHV, blaTEM, blaCTXM, qnrA, qnrB, qnrS, and aac(6')-Ib were detected in K. pneumoniae isolates. Only 5 (13.1%) isolates were resistant to colistin and the MIC range of these isolates was between 4 and 64 μg ml-1. Upregulation of the pmrA, pmrB, pmrC, phoQ, phoP, and arnT genes was observed in colistin-resistant isolates. The colistin-resistant isolates were found to possess a simultaneous presence of ESBLs, AmpC, fluoroquinolone, aminoglycoside, and carbapenem resistant genes. Conclusions This study reveals escalating antibiotic resistance in K. pneumoniae, with notable coexistence of various resistance traits, emphasizing the need for vigilant surveillance and innovative interventions.
Collapse
Affiliation(s)
- Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Golmoradi Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sadeghi P, Mahnam K, Salari-Jazi A, Aspatwar A, Faghri J. Evolutionary trajectories of beta-lactamase NDM and DLST cluster in Pseudomonas aeruginosa: finding the putative ancestor. Pathog Glob Health 2024; 118:170-181. [PMID: 37464884 PMCID: PMC11141312 DOI: 10.1080/20477724.2023.2236416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Pseudomonas aeruginosa has different antibiotic resistance pathways, such as broad-spectrum lactamases and metallo-β-lactamases (MBL), penicillin-binding protein (PBP) alteration, and active efflux pumps. Polymerase chain reaction (PCR) and sequencing methods were applied for double-locus sequence typing (DLST) and New Delhi metallo-β-lactamase (NDM) typing. We deduced the evolutionary pathways for DLST and NDM genes of P. aeruginosa using phylogenetic network. Among the analyzed isolates, 62.50% of the P. aeruginosa isolates were phenotypically carbapenem resistance (CARBR) isolates. Characterization of isolates revealed that the prevalence of blaNDM, blaVIM, blaIMP, undetermined carbapenemase, and MexAB-OprM were 27.5%, 2%, 2.5%, 12.5%, and 15%, respectively. The three largest clusters found were DLST t20-105, DLST t32-39, and DLST t32-52. The network phylogenic tree revealed that DLST t26-46 was a hypothetical ancestor for other DLSTs, and NDM-1 was as a hypothetical ancestor for NDMs. The combination of the NDM and DLST phylogenic trees revealed that DLST t32-39 and DLST tN2-N3 with NDM-4 potentially derived from DLST t26-46 along with NDM-1. Similarly, DLST t5-91 with NDM-5 diversified from DLST tN2-N3 with NDM-4. This is the first study in which DLST and NDM evolutionary routes were performed to investigate the origin of P. aeruginosa isolates. Our study showed that the utilization of medical equipment common to two centers, staff members common to two centers, limitations in treatment options, and prescription of unnecessary high levels of meropenem are the main agents that generate new types of resistant bacteria and spread resistance among hospitals.
Collapse
Affiliation(s)
- Parisa Sadeghi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shehrekord University, Shehrekord, Iran
| | - Azhar Salari-Jazi
- Department of Drug Development and Innovation, Behban Pharmed Lotus, Tehran, Iran
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jamshid Faghri
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Mousavi SM, Mousavi SMA, Moeinizadeh M, Aghajanidelavar M, Rajabi S, Mirshekar M. Evaluation of biosynthesized silver nanoparticles effects on expression levels of virulence and biofilm-related genes of multidrug-resistant Klebsiella pneumoniae isolates. J Basic Microbiol 2023. [PMID: 36658772 DOI: 10.1002/jobm.202200612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
The emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae is associated with high morbidity and mortality due to limited treatment options. This study attempts to biologically synthesize silver nanoparticles (AgNPs) and investigate their effect on expression levels of virulence and biofilm-related genes in clinically isolated K. pneumoniae. In this study, biofilm formation ability, antibiotic resistance pattern, extended-spectrum β-lactamases (ESBLs), and carbapenemases production were investigated for 200 clinical isolates of K. pneumoniae using phenotypic methods. Polymerase chain reaction (PCR) was used to detect virulence and biofilm-related genes, ESBL-encoding genes, and carbapenem resistance genes. AgNPs were synthesized using the bio-reduction method. The antibacterial effects of AgNPs were investigated by microdilution broth. In addition, the cytotoxic effect of AgNPs on L929 fibroblast cell lines was determined. The effects of AgNPs on K. pneumoniae virulence and biofilm-related genes (fimH, rmpA, and mrkA) were determined using quantitative real-time PCR. Thirty percent of the isolates produced a strong biofilm. The highest and lowest levels of resistance were observed against amoxicillin/clavulanic acid (95.4%) and tigecycline (96%), respectively. About 31% of isolates were considered positive for carbapenemases, and 75% of the isolates produced an ESBLs enzyme. Different frequencies of mentioned genes were observed. The synthesized AgNPs had a spherical morphology and varied in size. AgNPs inhibited the growth of MDR K. pneumoniae at 128 µg/ml. In addition, AgNPs downregulated the expression of fimH, rmpA, and mrkA genes by 10, 7, and 14-fold, respectively (p < 0.05), also exerted no cytotoxic effect on L929 fibroblast cell lines. It was revealed that AgNPs lead to a decrease in expression levels of virulence and biofilm-related genes; therefore, it was concluded that AgNPs had an excellent antibacterial effect on MDR K. pneumoniae.
Collapse
Affiliation(s)
- Seyed M Mousavi
- Scool of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | | | - Sajjad Rajabi
- International Campus, Iran University of Medical Science, Tehran, Iran
| | - Maryam Mirshekar
- Microbiology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Haji SH, Ali FA, Aka STH. Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Sci Rep 2022; 12:15254. [PMID: 36085334 PMCID: PMC9463142 DOI: 10.1038/s41598-022-19698-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
Nanotechnology is being investigated for its potential to improve nanomedicine for human health. The purpose of this study was to isolate carbapenemase-producing Gram-negative bacilli (CPGB), investigate the presence of carbapenemase resistance genes, determine their antibiogram and ability to biosynthesise silver nanoparticles (Ag NPs), and estimate the antibacterial activity of Acinetobacter baumannii-biosynthesised Ag NPs on CPGB alone and in combination with antibiotics. A total of 51 CPGBs were isolated from various specimens in the study. The automated Vitek-2 system was used to identify and test these strains' antimicrobial susceptibilities. The carbapenemase resistance genes were identified using a polymerase chain reaction (PCR). Under the CPGB, A. baumannii could biosynthesise Ag NPs. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and field emission scanning electron were used to characterise Ag NPs. The antibacterial activity of Ag NP alone and in combination with antibiotics against CPGB was determined using the broth microdilution method, and their synergistic effect was determined using the checkerboard assay. blaNDM and blaOXA-48 were the most commonly reported, and 90% of the isolates produced multiple carbapenemase genes. Tigecycline proved to be the most effective anti-CPGB antibiotic. Isolates with more resistance genes were more resistant to antibiotics, and isolates with three genes (42%) had the most extensively drug-resistant patterns (38%). A significant relationship was discovered between genetic and antibiotic resistance patterns. Only A. baumannii produced Ag NPs out of all the isolates tested. Ag NPs with a size of 10 nm were confirmed by UV–visible spectroscopy, FT-IR, XRD, and TEM analysis. The Ag NPs were effective against CPGB, with minimum inhibitory concentrations ranging from 64 to 8 μg/ml on average. Surprisingly, the combination of Ag NPs and antibiotics demonstrated synergistic and partial synergistic activity (fractional inhibitory concentration between 0.13 and 0.56) against CPGB, as well as a significant reduction in antibiotic concentrations, particularly in the case of A. baumanii versus ceftriaxone (1024 to 4 μg/ml). The notable synergistic activity of Ag NPs with antibiotics represents a valuable nanomedicine that may find clinical application in the future as a combined remedy.
Collapse
Affiliation(s)
- Sayran Hamad Haji
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.
| | - Fattma A Ali
- Department of Medical Microbiology, College of Health Science, Hawler Medical University, Erbil, Iraq
| | - Safaa Toma Hanna Aka
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
5
|
Shahin M, Ahmadi A. Molecular characterization of NDM-1-producing Pseudomonas aeruginosa isolates from hospitalized patients in Iran. Ann Clin Microbiol Antimicrob 2021; 20:76. [PMID: 34732199 PMCID: PMC8567709 DOI: 10.1186/s12941-021-00482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background The emergence of carbapenem-resistant Pseudomonas aeruginosa is one of the most important challenges in a healthcare setting. The aim of this study is double-locus sequence typing (DLST) typing of blaNDM-1 positive P. aeruginosa isolates. Methods Twenty-nine blaNDM-1 positive isolates were collected during three years of study from different cities in Iran. Modified hodge test (MHT), double-disk synergy test (DDST) and double-disk potentiation test (DDPT) was performed for detection of carbapenemase and metallo-beta-lactamase (MBL) producing blaNDM-1 positive P. aeruginosa isolates. The antibiotic resistance genes were considered by PCR method. Clonal relationship of blaNDM-1 positive was also characterized using DLST method. Results Antibiotic susceptibility pattern showed that all isolates were resistant to imipenem and ertapenem. DDST and DDPT revealed that 15/29 (51.8%) and 26 (89.7%) of blaNDM-1 positive isolates were MBL producing isolates, respectively. The presence of blaOXA-10,blaVIM-2, blaIMP-1 and blaSPM genes were detected in 86.2%, 41.4%, 34.5% and 3.5% isolates, respectively. DLST typing results revealed the main cluster were DLST 25-11 with 13 infected or colonized patients. Conclusions The presence of blaNDM-1 gene with other MBLs encoding genes in P. aeruginosa is a potential challenge in the treatment of microorganism infections. DLST showed partial diversity among 29 blaNDM-1 positive isolates.
Collapse
Affiliation(s)
- Mojtaba Shahin
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| | - Ali Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak Branch, Islamic Azad University, Arak, Iran.
| |
Collapse
|
6
|
Prevalence and characterisation of carbapenemase encoding genes in multidrug-resistant Gram-negative bacilli. PLoS One 2021; 16:e0259005. [PMID: 34723978 PMCID: PMC8559951 DOI: 10.1371/journal.pone.0259005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Emerging worldwide in the past decade, there has been a significant increase in multidrug-resistant bacteria from serious nosocomial infections, especially carbapenemase-producing Gram-negative bacilli that have emerged worldwide. The objective of this study is to investigate carbapenem resistance in Gram-negative bacilli bacteria using phenotypic detection, antimicrobial resistance profiles and genotypic characterisation methods. Methods 200 Gram-negative bacilli isolates were collected from different clinical specimens. All clinical samples were exposed to isolation and identification of significant pathogens applying bacteriological examination and an automated Vitek-2 system. The isolates were subjected to susceptibility tests by the Vitek-2 automated system and those isolates that were resistant to beta-lactam drugs, including carbapenems, third-generation cephalosporines or cefoxitin, were selected for phenotyping using Carba plus disc system assay for detection of carbapenemase-producing isolates. These isolates were further confirmed by molecular detection. PCR was used for the detection carbapenem-resistant genes (OXA-48, IMP, NDM, VIM, and KPC). Results 110 (55%) of 200 Gram-negative bacilli were identified as beta-lactam-resistant isolates. The frequency of carbapenem-resistant isolates was calculated to be 30.9% (n = 34/110). A collection totalling 65/110 (59%) isolates were identified as carbapenemase producers by phenotypic method. Moreover, among the 65 carbapenemase-producing Gram-negative isolates with a positive phenotype-based result, 30 (46%), 20 (30%) and 18 (27%) isolates were positive for OXA-48, KPC and MBL enzymes, respectively, as well as the production of 27% of AmpC with porin loss. Tigecycline was the most effective antibiotic that affected 70% of MDR isolates, but high rates of resistance were detected to other tested antimicrobials. Of interest, a high incidence of MDR, XDR and PDR profiles were observed among all carbapenemase-producing isolates. 36% (24/65) of the tested isolates were MDR to 3 to 5 antimicrobial classes. 29% (17/65) of the recovered isolates were XDR to 6 to 7 antimicrobial classes. Alarmingly, 24% (16/65) of isolates displayed PDR to all the tested 8 antimicrobial classes. Genotype assay, including 53 phenotypically confirmed carbapenemase-producing isolates of Gram-negative bacilli, found 51(96%) isolates were harbouring one or more genes. The most common carbapenemase gene was blaNDM 83% (44/53) followed by blaOXA-48 75% (40/53), blaVIM 49% (26/53) and blaIMP 43% (23/53), while the gene blaKPC was least frequent 7% (4/53). 92% (46/51) of isolates were involved in the production of more than one carbapenemase gene. Conclusion This study demonstrated the emergence of carbapenemase-producing Gram-negative pathogens implicated in healthcare-related infections. Accurate identification of carbapenem-resistant bacterial pathogens is essential for patient treatment, as well as the development of appropriate contamination control measures to limit the rapid spread of pathogens. Tigecycline exhibited potent antimicrobial activity against MDR, XDR and PDR-producing strains that establish a threatening alert which indicates the complex therapy of infections caused by these pathogens.
Collapse
|
7
|
Molecular Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Isolates Producing blaVIM, blaNDM, and blaIMP in Clinical Centers in Isfahan, Iran. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.114473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: The emergence and spread of metallo-beta-lactamase (MBL)-producing Klebsiella pneumoniae are growing global public health concerns. One of the most common mechanisms of carbapenem resistance is the production of MBLs, including Verona integron-encoded metallo-beta-lactamase (VIM), New Delhi metallo-beta-lactamase (NDM) and imipenemase (IMP). Objectives: This study aimed to investigate MBLs production among K. pneumoniae isolates. Methods: In this study, 240 K. pneumoniae isolates were collected from clinical samples in three clinical centers of Isfahan, Iran, during February 2017 and November 2018. All isolates were identified using biochemical, microbiological, and molecular methods, and then antimicrobial susceptibility tests were performed to find MBL-producing isolates via phenotypic and genotypic detection methods. Moreover, the minimum inhibitory concentration (MIC) of antibiotics against MBL-positive strains was determined by E-test. Eventually, the clonal relatedness of the MBL-positive strains was analyzed using both multilocus sequence typing (MLST) and rep-PCR. Results: Overall, 33.7% (81/240) of the isolates were resistant to carbapenems, among which 25 (30.8%) were considered MBL-positive. Among 81 strains resistant to carbapenems, genes encoding FimH, rmpA, and mrkD were detected in 87.6% (71/81), 11.1% (9/81), and 67.9% (55/81) of the isolates, respectively. Besides, TEM and SHV as antibiotic resistance genes were detected in 49.3% (40/81) and 80.2% (65/81) of the isolates. But, magA was not detected in any of the tested isolates. The PCR results revealed that blaVIM-1 was the most prevalent gene (13.6%; 11/81), while both blaIMP-1 and blaNDM-1 were only detected in two isolates. Multilocus sequence typing demonstrated that 15 MBL producers belonged to three sequence types (ST): 11 to ST23, two to ST1147, and two to ST15. Finally, rep-PCR typing showed similar fingerprints with MLST, except for ST23, such that ST23 was discriminated in two clonal groups, suggesting the greater discriminatory power of rep-PCR. Conclusions: Here, we reported the emergence of MBL-producing K. pneumoniae in clinical centers of Isfahan, Iran. The findings are alarming and represent the urgent need for the application of infection control programs.
Collapse
|
8
|
Kirtikliene T, Mierauskaitė A, Razmienė I, Kuisiene N. Multidrug-Resistant Acinetobacter baumannii Genetic Characterization and Spread in Lithuania in 2014, 2016, and 2018. Life (Basel) 2021; 11:life11020151. [PMID: 33669401 PMCID: PMC7920459 DOI: 10.3390/life11020151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial resistance to antimicrobial agents plays an important role in the treatment of bacterial infections in healthcare institutions. The spread of multidrug-resistant bacteria can occur during inter- and intra-hospital transmissions among patients and hospital personnel. For this reason, more studies must be conducted to understand how resistance occurs in bacteria and how it moves between hospitals by comparing data from different years and looking out for any patterns that might emerge. Multidrug-resistant (MDR) Acinetobacter spp. was studied at 14 healthcare institutions in Lithuania during 2014, 2016, and 2018 using samples from human bloodstream infections. In total, 194 isolates were collected and identified using MALDI-TOF and VITEK2 analyzers as Acinetobacter baumannii group bacteria. After that, the isolates were analyzed for the presence of different resistance genes (20 genes were analyzed) and characterized by using the Rep-PCR and MLVA (multiple-locus variable-number tandem repeat analysis) genotyping methods. The results of the study showed the relatedness of the different Acinetobacter spp. isolates and a possible circulation of resistance genes or profiles during the different years of the study. This study provides essential information, such as variability and diversity of resistance genes, genetic profiling, and clustering of isolates, to better understand the antimicrobial resistance patterns of Acinetobacter spp. These results can be used to strengthen the control of multidrug-resistant infections in healthcare institutions and to prevent potential outbreaks of this pathogen in the future.
Collapse
Affiliation(s)
- Tatjana Kirtikliene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-62156858
| | - Aistė Mierauskaitė
- National Public Health Surveillance Laboratory, Clinical Testing Department, LT-10257 Vilnius, Lithuania; (A.M.); (I.R.)
| | - Ilona Razmienė
- National Public Health Surveillance Laboratory, Clinical Testing Department, LT-10257 Vilnius, Lithuania; (A.M.); (I.R.)
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
9
|
Nasiri MJ, Mirsaeidi M, Mousavi SMJ, Arshadi M, Fardsanei F, Deihim B, Davoudabadi S, Zamani S, Hajikhani B, Goudarzi H, Goudarzi M, Seghatoleslami ZS, Dabiri H, Tabarsi P. Prevalence and Mechanisms of Carbapenem Resistance in Klebsiella pneumoniae and Escherichia coli: A Systematic Review and Meta-Analysis of Cross-Sectional Studies from Iran. Microb Drug Resist 2020; 26:1491-1502. [DOI: 10.1089/mdr.2019.0440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | - Mania Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Deihim
- Department of Bacteriology and Virology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Sara Davoudabadi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Zamani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Seghatoleslami
- Department of Infectious Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical TB and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Clinico-Microbiological Investigation on Fosfomycin and Tigecycline Resistant Gram-Negative Bacilli Isolated from Urinary Tract Infections: A Potential Resurgence. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.99990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Traditional antibiotics are no longer as effective as before for controlling pathogens associated with urinary tract infections (UTI), which shows the necessity of developing new and more effective antibiotics. Objectives: The current study aimed to evaluate in vitro susceptibility of fosfomycin and tigecycline towards common antibiotic-resistant Gram-negative bacilli isolated from the urinary tract. Besides, clinico-microbiological on fosfomycin and tigecycline resistant Gram-negative bacilli was investigated. Methods: In this descriptive cross-sectional study, 150 resistant Gram-negative bacilli were isolated from urine specimens send for culture, and antibiotic susceptibility assessment to the Division of Microbiology of Sina Hospital affiliated to Tabriz University of Medical Sciences which were collected from April-September 2017 are included. Antibiotic susceptibilities were evaluated according to the Clinical and Laboratory Standards published by the Institute and the criteria of the Food and Drug Administration. Results: Of 150 isolates, 138 (92%) were susceptible, and 2 (1.3%) were resistant to both fosfomycin and tigecycline, as confirmed by disk diffusion and Epsilonmeter tests. The difference was statistically significant (P = 0.001). Conclusions: Based on the results, resistance to the conventional antibiotics prescribed for the treatment of UTI was significantly high. Fosfomycin and tigecycline have an appropriate antimicrobial activity towards Gram-negative-resistant isolates involved in UTIs.
Collapse
|
11
|
Molecular mechanisms and prevalence of colistin resistance of Klebsiella pneumoniae in the Middle East region: A review over the last 5 years. J Glob Antimicrob Resist 2020; 22:625-630. [DOI: 10.1016/j.jgar.2020.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
|
12
|
Gajdács M, Urbán E. A 10-year single-center experience on Stenotrophomonas maltophilia resistotyping in Szeged, Hungary. Eur J Microbiol Immunol (Bp) 2020; 10:91-97. [PMID: 32590357 PMCID: PMC7391376 DOI: 10.1556/1886.2020.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
Stenotrophomonas maltophilia is an aerobic, oxidase-negative and catalase-positive bacillus. S. maltophilia is a recognized opportunistic pathogen. Due to the advancements in invasive medical procedures, organ transplantation and chemotherapy of malignant illnesses, the relevance of this pathogen increased significantly. The therapy of S. maltophilia infections is challenging, as these bacteria show intrinsic resistance to multiple classes of antibiotics, the first-choice drug is sulfamethoxazole/trimethoprim. Our aim was to assess the epidemiology of S. maltophilia from various clinical samples and the characterization of resistance-levels and resistotyping of these samples over a long surveillance period. The study included S. maltophilia bacterial isolates from blood culture samples, respiratory samples and urine samples and the data for the samples, received between January 2008 until December 2017, a total of 817 S. maltophilia isolates were identified (respiratory samples n = 579, 70.9%, blood culture samples n = 175, 21.4% and urine samples n = 63, 7.7%). Levofloxacin and colistin-susceptibility rates were the highest (92.2%; n = 753), followed by tigecycline (90.5%, n = 739), the first-line agent sulfamethoxazole/trimethoprim (87.4%, n = 714), while phenotypic resistance rate was highest for amikacin (72.5% of isolates were resistant, n = 592). The clinical problem of sulfamethoxazole/trimethoprim-resistance is a complex issue, because there is no guideline available for the therapy of these infections.
Collapse
Affiliation(s)
- Márió Gajdács
- 1Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720, Szeged, Hungary
| | - Edit Urbán
- 2Department of Public Health, Faculty of Medicine, University of Szeged, Dóm tér 10., 6720, Szeged, Hungary
| |
Collapse
|
13
|
Beigverdi R, Sattari-Maraji A, Emaneini M, Jabalameli F. Status of carbapenem-resistant Acinetobacter baumannii harboring carbapenemase: First systematic review and meta-analysis from Iran. INFECTION GENETICS AND EVOLUTION 2019; 73:433-443. [DOI: 10.1016/j.meegid.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
|
14
|
Nasiri MJ, Zamani S, Fardsanei F, Arshadi M, Bigverdi R, Hajikhani B, Goudarzi H, Tabarsi P, Dabiri H, Feizabadi MM. Prevalence and Mechanisms of Carbapenem Resistance in Acinetobacter baumannii: A Comprehensive Systematic Review of Cross-Sectional Studies from Iran. Microb Drug Resist 2019; 26:270-283. [PMID: 30822197 DOI: 10.1089/mdr.2018.0435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Carbapenem-resistant Acinetobacter baumannii (CRAB) is recognized to be among the most difficult antimicrobial-resistant gram-negative bacilli to control and treat. An understanding of the epidemiology of CRAB and the mechanisms of resistance to carbapenems is necessary to develop strategies to curtail their spread. Methods: Electronic databases were searched from January 1995 to December 2017 for all studies, which: (1) provide data on the frequency and antibiotic resistance profile of the isolated A. baumannii and (2) describe the mechanisms of carbapenem resistance in detail. Results: Sixty-eight studies were found referring to mechanisms of carbapenem resistance in clinical isolates of A. baumannii, and 56 studies were found referring to the frequency of CRAB. The pooled frequency of carbapenem resistance was 85.1% (95% confidence interval [CI]: 82.2-88.1) in 8,067 clinical isolates of A. baumannii. Resistances due to blaOXA23 (55.3%), blaOXA24 (41.4%), and blaOXA58 (5.2%) genes were the most prevalent reported mechanisms of resistance to carbapenem, respectively. Conclusions: Our data warn that CRAB will rise if the current situation remains uncontrolled. Better control infection strategies and antibiotic managements, particularly in the health care systems, are needed to limit the spread of this pathogen.
Collapse
Affiliation(s)
- Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Zamani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mania Arshadi
- Department of Medical Laboratory Sciences, Faculty of Para Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical TB and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Hoang CQ, Nguyen HD, Vu HQ, Nguyen AT, Pham BT, Tran TL, Nguyen HTH, Dao YM, Nguyen TSM, Nguyen DA, Tran HTT, Phan LT. Emergence of New Delhi Metallo-Beta-Lactamase (NDM) and Klebsiella pneumoniae Carbapenemase (KPC) Production by Escherichia coli and Klebsiella pneumoniae in Southern Vietnam and Appropriate Methods of Detection: A Cross-Sectional Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9757625. [PMID: 31179337 PMCID: PMC6507273 DOI: 10.1155/2019/9757625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 01/12/2023]
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are well known to cause many serious infections resulting in increasing mortality rate, treatment cost, and prolonged hospitalization. Among the widely recognized types of carbapenemases, New Delhi β-lactamase (NDM) and Klebsiella pneumoniae carbapenemase (KPC) are the most important enzymes. However, in Vietnam, there are only scattered reports of CPE due to the lack of simple and affordable methods that are suitable to laboratory conditions. This study aims to survey the characteristics of carbapenem-resistant E. coli and K. pneumoniae (CR-E/K) at two hospitals in Southern Vietnam and perform some simple methods to detect the two enzymes. A total of 100 CR-E/K strains were collected from clinical isolates of Gia Dinh People's Hospital and Dong Nai General Hospital, Vietnam, from November 2017 to May 2018. The patient-related information was also included in the analysis. We conducted real-time polymerase chain reaction (PCR), Modified Hodge Test (MHT), and combined disk test (CDT) on all isolates. Carbapenemase-encoding genes were detected in 47 isolates (36 NDM, 10 KPC, and one isolate harboring both genes). The E. coli strain carrying simultaneously these two genes was the first case reported here. Most of isolates were collected from patients in ICU, Infectious Disease Department, and Department of Urologic Surgery. Urine and sputum were two common specimens. The true positive rate (sensitivity, TPR) and specificity (SPC) of the imipenem-EDTA (ethylen diamine tetra acetic acid) for NDM detection and the imipenem-PBA (phenylboronic acid) for KPC detection on E. coli were 93.8%, 97.1% and 66.7%, 95.7%, respectively. Meanwhile, the imipenem-EDTA for NDM detection and the imipenem-PBA for KPC detection among K. pneumonia achieved 90.5%, 100% and 100%, 92.9% TPR and SPC, respectively. However, MHT showed low sensitivity and specificity. Our findings showed that CP-E/K were detected with high prevalence in the two hospitals. We suggest that CDT can be used as a low-priced and accurate method of detection.
Collapse
Affiliation(s)
| | - Hai D. Nguyen
- The Pasteur Institute, Ho Chi Minh City 700000, Vietnam
| | - Huy Q. Vu
- Department of Medical Laboratory Science, Faculty of Nursing and Medical Technology, University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam
| | - Anh T. Nguyen
- Molecular Biomedical Center for Diagnosis and Training, University Medical Center Branch No. 2, Medical and Pharmacy University Hospital, Ho Chi Minh City 700000, Vietnam
| | - Binh T. Pham
- Department of Medical Laboratory Science, Faculty of Nursing and Medical Technology, University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam
| | - Trung L. Tran
- College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanh T. H. Nguyen
- Department of Medical Laboratory Science, Faculty of Nursing and Medical Technology, University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam
| | - Y. M. Dao
- Department of Microbiology, Dong Nai General Hospital, Dong Nai Province 710000, Vietnam
| | - Tuyet S. M. Nguyen
- Department of Microbiology, Gia Dinh People's Hospital, Ho Chi Minh City 700000, Vietnam
| | - Dung A. Nguyen
- Department of Microbiology, Gia Dinh People's Hospital, Ho Chi Minh City 700000, Vietnam
| | - Hang T. T. Tran
- Department of Medical Laboratory Science, Faculty of Nursing and Medical Technology, University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam
| | - Lan T. Phan
- The Pasteur Institute, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
16
|
Jamal S, Al Atrouni A, Rafei R, Dabboussi F, Hamze M, Osman M. Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon. J Glob Antimicrob Resist 2018; 15:154-163. [PMID: 29859266 DOI: 10.1016/j.jgar.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/24/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterium involved in several types of infection with high mortality and morbidity, especially in intensive care units. Treatment of these infections remains a challenge due to the worldwide emergence of broad-spectrum resistance to many antibiotics. Following the implementation of molecular techniques to study A. baumannii outbreaks, it has been shown that they are mainly caused by specific clones such as international clones I, II and III. The present work aims to review the available data on the mechanisms underlying antimicrobial resistance in A. baumannii, with a special focus on the molecular epidemiology of this species in Lebanon.
Collapse
Affiliation(s)
- Sabah Jamal
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon.
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| |
Collapse
|
17
|
Heidari H, Halaji M, Taji A, Kazemian H, Shahini Shams Abadi M, Taheripour Sisakht M, Sedigh Ebrahim-Saraie H. Molecular analysis of drug-resistant Acinetobacter baumannii isolates by ERIC-PCR. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Hojabri Z, Arab M, Darabi N, Kia NS, Lopes BS, Pajand O. Evaluation of the commercial combined disk test and minimum inhibitory concentration (MIC) determination for detection of carbapenemase producers among Gram-negative bacilli isolated in a region with high prevalence of blaOXA-48 and blaNDM. Int Microbiol 2018; 22:81-89. [DOI: 10.1007/s10123-018-0030-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 12/01/2022]
|