1
|
Rodríguez-Gascón A, Alarcia-Lacalle A, Solinís MÁ, Del Pozo-Rodríguez A, Abajo Z, Cabero M, Canut A, Isla A. Pharmacokinetic/Pharmacodynamic Analysis of Oral Calcium Fosfomycin: Are Urine Levels Sufficient to Ensure Efficacy for Urinary Tract Infections? Pharmaceutics 2023; 15:pharmaceutics15041185. [PMID: 37111669 PMCID: PMC10144240 DOI: 10.3390/pharmaceutics15041185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Urinary tract infections (UTIs) are extremely common and a major driver for the use of antimicrobials. Calcium fosfomycin is an old antibiotic indicated for the treatment of UTIs; however, data about its urine pharmacokinetic profile are scarce. In this work, we have evaluated the pharmacokinetics of fosfomycin from urine concentrations after oral administration of calcium fosfomycin to healthy women. Moreover, we have assessed, by pharmacokinetic/pharmacodynamic (PK/PD) analysis and Monte Carlo simulations, its effectiveness considering the susceptibility profile of Escherichia coli, the main pathogen involved in UTIs. The accumulated fraction of fosfomycin excreted in urine was around 18%, consistent with its low oral bioavailability and its almost exclusively renal clearance by glomerular filtration as unchanged drug. PK/PD breakpoints resulted to be 8, 16, and 32 mg/L for a single dose of 500 mg, a single dose of 1000 mg, and 1000 mg q8h for 3 days, respectively. For empiric treatment, the estimated probability of treatment success was very high (>95%) with the three dose regimens, considering the susceptibility profile of E. coli reported by EUCAST. Our results show that oral calcium fosfomycin at a dose level of 1000 mg every 8 h provides urine concentrations sufficient to ensure efficacy for the treatment of UTIs in women.
Collapse
Affiliation(s)
- Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01009 Vitoria-Gasteiz, Spain
| | - Ana Alarcia-Lacalle
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01009 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01009 Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01009 Vitoria-Gasteiz, Spain
| | - Zuriñe Abajo
- Bioaraba, Clinical Trials Unit, 01009 Vitoria-Gasteiz, Spain
| | - María Cabero
- Bioaraba, Clinical Trials Unit, 01009 Vitoria-Gasteiz, Spain
| | - Andrés Canut
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01009 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology Service, Araba University Hospital, Osakidetza Basque Health Service, 01009 Vitoria-Gasteiz, Spain
| | - Arantxa Isla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Abbas MA, Lee EB, Boby N, Biruhanu BT, Park SC. A pharmacodynamic investigation to assess the synergism of orbifloxacin and propyl gallate against Escherichia coli. Front Pharmacol 2022; 13:989395. [PMID: 36188537 PMCID: PMC9521280 DOI: 10.3389/fphar.2022.989395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Escherichia coli (E. coli) infections are becoming increasingly difficult to treat, as antibiotic-resistant variants proliferate. Studies on novel methods to combat the spread of resistance and improve the performance of current antibiotics are vital. We aimed to boost the efficacy of the antibiotic orbifloxacin (ORB) against E. coli by combining it with a phenolic component, propyl gallate (PG). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ORB against the E. coli KVCC 1423 resistant strain were 128 μg/ml and 256 μg/ml, respectively. However, the MIC of ORB for the remaining E. coli strains was 0.5 μg/ml–2 μg/ml. For the combination of PG and ORB, the lowest fractional inhibitory concentration (FIC) index was less than 0.5, and the combination decreased the MIC of both drugs by 74%. The time-kill assay revealed the killing properties of both the drugs and the pharmacodynamic model (PD model) confirmed the strong killing properties of the combination as compared to the individual activities of the drugs. The ratio between MIC and mutant prevention concentration of ORB against E. coli 1400306 and 1,423 were 1:32 and 1:8, respectively. The combination of ORB and PG showed strong biofilm eradication and inhibited the motility of bacteria. The cell viability of the combination was > 80%. Therefore, we believe that ORB and PG in combination could be a possible antibacterial candidate that could minimize resistance and improve antibiotic potential.
Collapse
Affiliation(s)
- Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
| | - Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
| | - Biruk Tesfaye Biruhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
- *Correspondence: Biruk Tesfaye Biruhanu, ; Seung-Chun Park,
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Gyeongsangbuk-do, South Korea
- *Correspondence: Biruk Tesfaye Biruhanu, ; Seung-Chun Park,
| |
Collapse
|
3
|
Martinez MN, Miller RA, Martín-Jiménez T, Sharkey MJ. Application of pharmacokinetic/pharmacodynamic concepts to the development of treatment regimens for sporadic canine urinary tract infections: Challenges and paths forward. J Vet Pharmacol Ther 2022; 45:415-425. [PMID: 35906854 DOI: 10.1111/jvp.13088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
Antimicrobial efficacy can be predicted based on infection site exposure to the antimicrobial agent relative to the in vitro susceptibility of the pathogen to that agent. When infections occur in soft tissues (e.g., muscle, blood, and ligaments), exposure at the infection site is generally assumed to reflect an equilibrium between the unbound concentrations in plasma and that in the interstitial fluids. In contrast, for sporadic urinary tract infections (UTIs) in dogs and uncomplicated UTIs in humans, the primary site of infection is the bladder wall. Infection develops when bacteria invade the host bladder urothelium (specifically, the umbrella cells that form the urine-contacting layer of the stratified uroepithelium) within which these bacteria can avoid exposure to host defenses and antimicrobial agents. Traditionally, pathogen susceptibility has been estimated using standardized in vitro tests that measure the minimal concentration that will inhibit pathogen growth (MIC). When using exposure-response relationships during drug development to explore dose optimization, these relationships can either be based upon an assessment of a correlation between clinical outcome, drug exposure at the infection site, and pathogen MIC, or upon benchmark exposure-response relationships (i.e., pharmacokinetic/pharmacodynamic indices) typically used for the various drug classes. When using the latter approach, it is essential that the unbound concentrations at the infection site be considered relative to the MIC within the biological matrix to which the pathogen will be exposed. For soft tissue infections, this typically is the unbound plasma concentrations versus MICs determined in standardized media such as cation-adjusted Mueller Hinton broth, which is how many indices were originally established. However, for UTIs, it is the unbound drug concentrations within the urine versus the MICs in the actual urine biophase that needs to be considered. The importance of these relationships and how they are influenced by drug resistance, resilience, and inoculum are discussed in this review using fluoroquinolones and beta-lactams as examples.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland, USA
| | - Ron A Miller
- Division of Human Food Safety, Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland, USA
| | - Tomás Martín-Jiménez
- Division of Scientific Support, Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland, USA
| | - Michele J Sharkey
- Division of Companion Animal Drugs, Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland, USA
| |
Collapse
|
4
|
Harada K, Shimizu T, Kawaguchi K, Furuhashi T, Ishihara G. Urinary Pharmacokinetic and Pharmacodynamic Profiles of Fosfomycin against Extended-Spectrum β-Lactamase-Producing Escherichia coli with Canine Ex Vivo Modeling: A Pilot Study. Antibiotics (Basel) 2020; 9:E230. [PMID: 32380640 PMCID: PMC7277591 DOI: 10.3390/antibiotics9050230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/07/2023] Open
Abstract
Fosfomycin is a candidate drug for extended-spectrum β-lactamase (ESBL)-producing bacteria, but its efficacy is yet to be investigated in dogs. This study investigated the urinary pharmacokinetic/pharmacodynamic (PK/PD) profile of fosfomycin orally administered at 80 mg/kg to six healthy dogs to assess its efficacy for canine urinary tract infections (UTIs) caused by ESBL-producing bacteria. Four strains of ESBL-producing Escherichia coli (ESBL-EC) characterized by fosfomycin minimum inhibitory concentrations (MICs) of 0.5, 1, 2, and 32 µg/mL were used. Urine samples for the measurement of urinary drug concentrations and urinary bactericidal titers (UBTs) were obtained after drug administration. The urinary concentrations (µg/mL, mean ± SE) were 1348.2 ± 163.5, 1191.6 ± 260.2, and 661.1 ± 190.4 at 0-4, 4-8, and 8-12 h, respectively, after drug administration. The mean urinary area under the curve during the test period (AUC0-12) of fosfomycin was estimated to be 12,803.8 µg·h/mL. The UBTs for all tested strains fluctuated closely with urine concentration during the test period (r = 0.944-1.000), and the area under the UBT-versus-time curve correlated with the urinary AUC/MIC of each strain (r = 0.991). According to the optimal urinary PK/PD target value, fosfomycin at 80 mg/kg twice daily may be suitable for the treatment of canine UTIs caused by ESBL-EC presenting MIC ≤ 128 µg/mL.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, Tottori 680-8553, Japan; (T.S.); (K.K.)
| | - Takae Shimizu
- Department of Veterinary Internal Medicine, Tottori University, Tottori 680-8553, Japan; (T.S.); (K.K.)
- Anicom Specialty Medical Institute Inc., Kanagawa 231-0033, Japan; (T.F.); (G.I.)
| | - Koji Kawaguchi
- Department of Veterinary Internal Medicine, Tottori University, Tottori 680-8553, Japan; (T.S.); (K.K.)
| | - Takeshi Furuhashi
- Anicom Specialty Medical Institute Inc., Kanagawa 231-0033, Japan; (T.F.); (G.I.)
| | - Genki Ishihara
- Anicom Specialty Medical Institute Inc., Kanagawa 231-0033, Japan; (T.F.); (G.I.)
| |
Collapse
|
5
|
Harada K, Shimizu T, Miyashita N, Hikasa Y. Assessment of urinary pharmacokinetic and pharmacodynamic profiles of faropenem against extended-spectrum β-lactamase-producing Escherichia coli with canine ex vivo modelling: a pilot study. Access Microbiol 2019; 1:e000004. [PMID: 32974491 PMCID: PMC7470355 DOI: 10.1099/acmi.0.000004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
This study was carried out to investigate the urinary pharmacokinetics and pharmacodynamics of faropenem administered orally at 5 mg kg-1 in six healthy dogs to assess the efficacy of the drug for canine urinary tract infections (UTIs) with extended-spectrum β-lactamase (ESBL)-producing bacteria. Six strains of ESBL-producing Escherichia coli (ESBL-EC) with the following faropenem minimum inhibitory concentrations (MICs) were used: 1 µg ml-1 (n=2), 2 µg ml-1 (n=2), 4 µg ml-1 (n=1) and 16 µg ml-1 (n=1). Urine samples were obtained every 4 h for the first 12 h after administration to measure urinary drug concentration and urinary bactericidal titres (UBTs). Both the urine concentration of faropenem and the UBTs for all tested strains peaked at 0-4 h after administration, and decreased markedly at 8-12 h. The mean urinary concentration of faropenem at 8-12 h (23±5.2 µg ml-1) exceeded the MIC of 1 µg ml-1 by fourfold, which is required to inhibit the growth of 90 % of ESBL-EC. These findings indicate that faropenem administered twice daily at a dose of 5 mg kg-1 is acceptable for the treatment of most dogs with ESBL-EC-related UTIs.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, Minami 4-101, Koyama-Cho, Tottori 680-8553, Japan
| | - Takae Shimizu
- Department of Veterinary Internal Medicine, Tottori University, Minami 4-101, Koyama-Cho, Tottori 680-8553, Japan
| | - Naoki Miyashita
- Department of Veterinary Internal Medicine, Tottori University, Minami 4-101, Koyama-Cho, Tottori 680-8553, Japan
| | - Yoshiaki Hikasa
- Department of Veterinary Internal Medicine, Tottori University, Minami 4-101, Koyama-Cho, Tottori 680-8553, Japan
| |
Collapse
|