1
|
Maugeri G, Calvo M, Bongiorno D, Bivona D, Migliorisi G, Privitera GF, Scalia G, Stefani S. Sequencing Analysis of Invasive Carbapenem-Resistant Klebsiella pneumoniae Isolates Secondary to Gastrointestinal Colonization. Microorganisms 2025; 13:89. [PMID: 39858857 PMCID: PMC11767272 DOI: 10.3390/microorganisms13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Klebsiella pneumoniae represent a common invasive infection etiological agent, whose potential carbapenem-resistance and hypermucoviscosity complicate the patient's management. Infection development often derives from gastrointestinal colonization; thus, it is fundamental to monitor asymptomatic K. pneumoniae colonization through surveillance protocols, especially for intensive care and immunocompromised patients. We described a six-month routine screening protocol from the Policlinico of Catania (Italy), while blood samples were collected from the same patients only in cases of a systemic infection suspicion. All the patients who had dissemination episodes were furtherly investigated through next-generation sequencing, analyzing both colonizing and disseminating strains. This study documents emerging invasive sequence types such as ST101, ST307, and ST395, mainly revealing blaNDM or blaKPC genes, along with siderophores and hyperproduction capsule markers as virulence factors. Most of the detected factors are presumably related to a specific plasmid content, which are extremely varied and rich. In conclusion, active surveillance through sequencing is essential to enhance awareness of local epidemiology within high-risk multi-drug resistance areas. A random sequencing analysis on the most warning microorganisms could enhance sequence typing (ST) awareness within specific settings, allowing for better prevention control strategies on their eventual persistence or diffusion.
Collapse
Affiliation(s)
- Gaetano Maugeri
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| | - Dafne Bongiorno
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Dalida Bivona
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O. “G.F. Ingrassia”, Corso Calatafimi 1002, 90131 Palermo, Italy;
| | - Grete Francesca Privitera
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Guido Scalia
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| | - Stefania Stefani
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| |
Collapse
|
2
|
Antimicrobial Treatment of Serratia marcescens Invasive Infections: Systematic Review. Antibiotics (Basel) 2023; 12:antibiotics12020367. [PMID: 36830278 PMCID: PMC9952094 DOI: 10.3390/antibiotics12020367] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Serratia marcescens (SM) is a Gram-negative pathogen discovered by Italian pharmacist, Bizio, in 1819. According to the literature, S. marcescens is resistant to a wide range of antibiotics, including penicillin, cephalosporin, tetracycline, macrolide, nitrofurantoin, and colistin. We conducted a systematic review of published reports, determined what invasive infections could cause SM, and established the most appropriate antibiotic therapy. Methods: We registered this systematic review on the PROSPERO registry of systematic reviews-meta-analyses before we started our research (registration number CRD42022323159). The online searches of published studies were implemented via MEDLINE, the Cochrane Central Register of Controlled Trials, EBSCO, Scopus, Google Scholar, SCIndex, and the registry of clinical studies of human participants (ClinicalTrials.gov). Results: Our study included 32 published articles (9 case series and 23 case reports). There were 57 individual cases, respectively. The oldest patient was 97 years and the youngest patient was a newborn. S. marcescens was, in most cases, isolated from blood followed by urine and cerebrospinal fluid. In most cases, sensitivity was tested to cotrimoxazole (from 27 isolates, 10 showed resistance) followed by gentamicin (from 26 isolates, 3 showed resistance) as well as amikacin (from 21 isolates, none showed resistance). Patients died from an infection in 21 cases (31%). Conclusions: Treatment of SM infections should include carbapenems or aminoglycosides in combination with third-generation (and eventually fourth-generation) cephalosporin. Cotrimoxazole should be considered in cases of uncomplicated urinary infections.
Collapse
|
3
|
Di Mento G, Gona F, Russelli G, Cuscino N, Barbera F, Carreca AP, Di Carlo D, Cardinale F, Monaco F, Campanella M, Mularoni A, Grossi P, Conaldi PG, Douradinha B. A retrospective molecular epidemiological scenario of carbapenemase-producing Klebsiella pneumoniae clinical isolates in a Sicilian transplantation hospital shows a swift polyclonal divergence among sequence types, resistome and virulome. Microbiol Res 2021; 256:126959. [PMID: 34995971 DOI: 10.1016/j.micres.2021.126959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022]
Abstract
In this work, we assessed and characterized the epidemiological scenario of carbapenem-resistant Klebsiella pneumoniae strains (CR-Kp) at IRCCS-ISMETT, a transplantation hospital in Palermo, Italy, from 2008 to 2017. A total of 288 K. pneumoniae clinical isolates were selected based on their resistance to carbapenems. Molecular characterization was also done in terms of the presence of virulence and resistance genes. All patients were inpatients from our facility and clinical isolates were collected from several sources, either from infection or colonization cases. We observed that, in agreement with the Italian epidemiological scenario, initially only ST258 and ST512 clade II (but not from clade I) were identified from 2008 to 2011. From 2012 onwards, other STs have been observed, including the clinically relevant ST101 and ST307, but also others not previously observed in other Italian health settings, such as ST220 and ST753. The presence of genes involved in resistance and virulence was confirmed, and a heterogeneous genetic resistance profile throughout the years was observed. Our work highlights that resistance genes are rapidly disseminating between different and novel K. pneumoniae clones which, combined with resistance to multiple antibiotics, can derive into more aggressive and pathogenic multidrug-resistant strains of clinical importance. Our results stress the importance of continuous surveillance of CR Enterobacterales in health facilities so that novel STs carrying resistance and virulence genes that may become increasingly pathogenic can be identified and adequate therapies to adopted to avoid their dissemination and derived pathologies.
Collapse
Affiliation(s)
- Giuseppina Di Mento
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Floriana Gona
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Giovanna Russelli
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Nicola Cuscino
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Floriana Barbera
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Anna Paola Carreca
- Unità di Medicina Rigenerativa ed Immunologia, Fondazione Ri.MED, Palermo, Italy
| | - Daniele Di Carlo
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Francesca Cardinale
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Francesco Monaco
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Maria Campanella
- Dipartimento per la Cura e lo Studio delle Patologie Addominali e dei Trapianti Addominali, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Alessandra Mularoni
- Dipartimento per la Cura e lo Studio delle Patologie Addominali e dei Trapianti Addominali, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Paolo Grossi
- Dipartimento di Malattie Infettive e Tropicali, Università di Insubria, Ospedale di Circolo Fondazione Macchi, Varese, Italy
| | - Pier Giulio Conaldi
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Bruno Douradinha
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy; Unità di Medicina Rigenerativa ed Immunologia, Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
4
|
Matteoli FP, Pedrosa-Silva F, Dutra-Silva L, Giachini AJ. The global population structure and beta-lactamase repertoire of the opportunistic pathogen Serratia marcescens. Genomics 2021; 113:3523-3532. [PMID: 34400240 DOI: 10.1016/j.ygeno.2021.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Serratia marcescens is a global spread nosocomial pathogen. This rod-shaped bacterium displays a broad host range and worldwide geographical distribution. Here we analyze an international collection of this multidrug-resistant, opportunistic pathogen from 35 countries to infer its population structure. We show that S. marcescens comprises 12 lineages; Sm1, Sm4, and Sm10 harbor 78.3% of the known environmental strains. Sm5, Sm6, and Sm7 comprise only human-associated strains which harbor smallest pangenomes, genomic fluidity and lowest levels of core recombination, indicating niche specialization. Sm7 and Sm9 lineages exhibit the most concerning resistome; blaKPC-2 plasmid is widespread in Sm7, whereas Sm9, also an anthropogenic-exclusive lineage, presents highest plasmid/lineage size ratio and plasmid-diversity encoding metallo-beta-lactamases comprising blaNDM-1. The heterogeneity of resistance patterns of S. marcescens lineages elucidated herein highlights the relevance of surveillance programs, using whole-genome sequencing, to provide insights into the molecular epidemiology of carbapenemase producing strains of this species.
Collapse
|
5
|
Wang X, Xiao W, Li L, Jing M, Sun M, Chang Y, Qu Y, Jiang Y, Xu Q. Analysis of the molecular characteristics of a blaKPC-2-harbouring untypeable plasmid in Serratia marcescens. Int Microbiol 2021; 25:237-244. [PMID: 34232406 DOI: 10.1007/s10123-021-00172-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Serratia marcescens has attracted increasing attention worldwide as a neglected opportunistic pathogen of public health concern, especially due to its antimicrobial resistance features, which usually cause nosocomial infections in immunocompromised or critically ill patients. METHODS In our study, four carbapenem-resistant Serratia marcescens (CRSM) clinical isolates were characterized in our hospital from February 2018 to May 2018. The conjugation experiment confirmed the transferability of the carbapenem resistance gene. The types of carbapenem resistance genes were detected by PCR. The homology of the strains was analysed by pulsed field gel electrophoresis (PFGE). The characteristics of the plasmid and environment of carbapenem resistance genes were analysed after whole genome sequencing was performed. Then, we compared the amino acid sequence of the replication initiation protein and constructed a dendrogram by the neighbour-joining method. RESULTS All four isolates showed carbapenem resistance conferred by a blaKPC-2-harbouring plasmid. They had exactly the same bands confirmed by PFGE and were defined as the homologous strains. The blaKPC-2 genes in all of the isolates were located in a 42,742 bp plasmid, which was located in the core region of antibiotic resistance and was composed of Tn3 family transposons, recombinant enzyme genes, ISKpn6 and ISKpn27. The core region of antibiotic resistance formed a 'Tn3-ISKpn6-blaKPC-ISKpn27-Tn3' structure, which was an independent region as a movable element belonging to transposon Tn6296 and its derivatives. The plasmid had a similar skeleton to incX6 plasmids and a similar amino acid sequence to the replication initiation protein. The plasmid was defined as an untypeable blaKPC-2-harbouring plasmid named the 'IncX6-like' plasmid. CONCLUSION The four CRSM isolates were mainly clonally disseminated with a blaKPC-2-harbouring plasmid in our hospital. The pKPC-2-HENAN1602 plasmid (CP047392) in our study was first reported in Serratia marcescens, which belongs to an untypeable group named the 'IncX6-like' plasmid. The carbapenem-resistant gene structure surrounding blaKPC-2 as a sole accessory module can be acquired by horizontal gene transfer and might lead to serious nosocomial infection.
Collapse
Affiliation(s)
- Xiaokun Wang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Weiqiang Xiao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Lu Li
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Min Jing
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Mingyue Sun
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Yanmin Chang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Yuanye Qu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Yu Jiang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China. .,Department of Zhengzhou Key Laboratory of Digestive Tumor Markers, No.127 Dongming Road Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China.
| |
Collapse
|
6
|
Bulati M, Busà R, Carcione C, Iannolo G, Di Mento G, Cuscino N, Di Gesù R, Piccionello AP, Buscemi S, Carreca AP, Barbera F, Monaco F, Cardinale F, Conaldi PG, Douradinha B. Klebsiella pneumoniae Lipopolysaccharides Serotype O2afg Induce Poor Inflammatory Immune Responses Ex Vivo. Microorganisms 2021; 9:microorganisms9061317. [PMID: 34204279 PMCID: PMC8234205 DOI: 10.3390/microorganisms9061317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Currently, Klebsiella pneumoniae is a pathogen of clinical relevance due to its plastic ability of acquiring resistance genes to multiple antibiotics. During K. pneumoniae infections, lipopolysaccharides (LPS) play an ambiguous role as they both activate immune responses but can also play a role in immune evasion. The LPS O2a and LPS O2afg serotypes are prevalent in most multidrug resistant K. pneumoniae strains. Thus, we sought to understand if those two particular LPS serotypes were involved in a mechanism of immune evasion. We have extracted LPS (serotypes O1, O2a and O2afg) from K. pneumoniae strains and, using human monocytes ex vivo, we assessed the ability of those LPS antigens to induce the production of pro-inflammatory cytokines and chemokines. We observed that, when human monocytes are incubated with LPS serotypes O1, O2a or O2afg strains, O2afg and, to a lesser extent, O2a but not O1 failed to elicit the production of pro-inflammatory cytokines and chemokines, which suggests a role in immune evasion. Our preliminary data also shows that nuclear translocation of NF-κB, a process which regulates an immune response against infections, occurs in monocytes incubated with LPS O1 and, to a smaller extent, with LPS O2a, but not with the LPS serotype O2afg. Our results indicate that multidrug resistant K. pneumoniae expressing LPS O2afg serotypes avoid an initial inflammatory immune response and, consequently, are able to systematically spread inside the host unharmed, which results in the several pathologies associated with this bacterium.
Collapse
Affiliation(s)
- Matteo Bulati
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Rosalia Busà
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Claudia Carcione
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
| | - Gioacchin Iannolo
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Giuseppina Di Mento
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Nicola Cuscino
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, 90133 Palermo, Italy; (A.P.P.); (S.B.)
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, 90133 Palermo, Italy; (A.P.P.); (S.B.)
| | | | - Floriana Barbera
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Francesco Monaco
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Francesca Cardinale
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Pier Giulio Conaldi
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Bruno Douradinha
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
- Correspondence: ; Tel.: +39-091-2192649; Fax: +39-091-2192423
| |
Collapse
|
7
|
D'Apolito D, Arena F, Conte V, De Angelis LH, Di Mento G, Carreca AP, Cuscino N, Russelli G, Iannolo G, Barbera F, Pasqua S, Monaco F, Cardinale F, Rossolini GM, Conaldi PG, Douradinha B. Phenotypical and molecular assessment of the virulence potential of KPC-3-producing Klebsiella pneumoniae ST392 clinical isolates. Microbiol Res 2020; 240:126551. [PMID: 32652494 DOI: 10.1016/j.micres.2020.126551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium of clinical importance, due to its resistance to several antibiotic classes. We have identified 4 clinical isolates of K. pneumoniae sequence type (ST) 392 KPC-3-producing strains from patients at the Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS-ISMETT), a Southern Italian transplantation health facility, during a routine surveillance for carbapenemase-producing Enterobacterales from in-house clinical samples. Since those were among, to the best of our knowledge, the first KPC-producing K. pneumoniae ST392 isolated in Europe, we assessed their virulence potential, to understand if this particular ST can become an endemic clinical threat. ST392 isolates were investigated to assess their virulence potential, namely resistance to human sera, formation of abiotic biofilms, adhesion to biotic surfaces, exopolysaccharide production and in vivo pathogenesis in the wax moth Galleria mellonella animal model. ST392-belonging strains were highly resistant to human sera. These strains also have a high capacity to form abiotic biofilms and high levels of adhesion to the human epithelial colorectal adenocarcinoma HT-29 cell line. An increase of transcriptional levels of genes involved in serum resistance (aroE and traT) and adhesion (pgaA) was observed when compared with the Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603 reference strain. Infection of G. mellonella larvae with ST392 clinical isolates showed that the latter were not highly pathogenic in this model. Together, our results indicate that ST392 isolates have the potential to become a strain of clinical relevance, especially in health settings where patients are immunosuppressed, e.g., transplant recipients.
Collapse
Affiliation(s)
| | - Fabio Arena
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Foggia, Italy; IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Viola Conte
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | - Gian Maria Rossolini
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Florence, Italy; SOD Microbiologia e Virologia, Azienda Ospedaliera Universitaria Careggi Florence, Italy
| | | | - Bruno Douradinha
- Fondazione Ri.MED, Palermo, Italy; IRCCS-ISMETT, Palermo, Italy.
| |
Collapse
|
8
|
Singh BR, Singh SV. Metallo-β-Lactamase and Extended-Spectrum-β-Lactamase Production by Serratia Strains [Letter]. Infect Drug Resist 2020; 13:1295-1297. [PMID: 32440166 PMCID: PMC7221414 DOI: 10.2147/idr.s257872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Bhoj R Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Shiv Varan Singh
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| |
Collapse
|
9
|
Xu Q, Fu Y, Zhao F, Jiang Y, Yu Y. Molecular Characterization of Carbapenem-Resistant Serratia marcescens Clinical Isolates in a Tertiary Hospital in Hangzhou, China. Infect Drug Resist 2020; 13:999-1008. [PMID: 32308441 PMCID: PMC7152788 DOI: 10.2147/idr.s243197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Although carbapenem-resistant Enterobacteriaceae (CRE) have been thoroughly investigated as the pathogens most commonly associated with clinical infections, data on Serratia marcescens are inadequate and superficial. METHODS In this study, we characterized 36 carbapenem-resistant Serratia marcescens (CRSM) isolates in our hospital from April 2018 to March 2019 by analysing whole-genome sequencing (WGS) data. The molecular typing of the isolates was performed using both pulsed-field gel electrophoresis (PFGE) and core genome multilocus sequence typing (cgMLST). RESULTS Thirty-three of the 36 isolates showed carbapenem resistance conferred by a bla KPC-2-harbouring plasmid, while the remaining three isolates were characterized by overexpression of beta-lactamase combined with porin loss. The bla KPC-2 genes in all the isolates were located on a plasmid of ~103 kb, except one, which was on a plasmid of ~94 kb. The gene structure surrounding bla KPC-2 in the plasmids was confirmed by integration of a partial Tn4401 structure and an intact IS26 as previously reported. Most of the plasmids also contained a mobile genetic element (MGE) comprising qnr and ISKpn19, which provided evidence of horizontal transfer of antibiotic resistance genes. CONCLUSION The thirty-six CRSM isolates were mainly clonally disseminated with a bla KPC-2-harbouring plasmid in our hospital. The gene structure surrounding bla KPC-2 as an MGE, as well as the qnr segment, might be acquired by horizontal gene transfer, and it could aggravate the infection and increase the difficulty of clinical treatment.
Collapse
Affiliation(s)
- Qian Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou City, Zhejiang Province, 310016, People’s Republic of China
| | - Ying Fu
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province310016, People’s Republic of China
| | - Feng Zhao
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province310016, People’s Republic of China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou City, Zhejiang Province, 310016, People’s Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou City, Zhejiang Province, 310016, People’s Republic of China
| |
Collapse
|
10
|
Bielli A, Piazza A, Cento V, Comandatore F, Lepera V, Gatti M, Brioschi P, Vismara C, Bandi C, Perno CF. In vivo acquisition and risk of inter-species spread of bla KPC-3-plasmid from Klebsiella pneumoniae to Serratia marcescens in the lower respiratory tract. J Med Microbiol 2020; 69:82-86. [PMID: 31904319 DOI: 10.1099/jmm.0.001113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, Serratia marcescens has emerged as an important agent of hospital-acquired infections, such as pneumonia, urinary tract infection, septicaemia and meningitis, particularly in vulnerable patients. Compared to Klebsiella pneumoniae and Escherichia coli, S. marcescens is less commonly associated with bla KPC genes, yet few cases of plasmid transmission at the gastrointestinal level from K. pneumoniae carbapenemase (KPC)-producing Enterobacterales to S. marcescens have been described. Here we report a case of in vivo acquisition, during a 3-month period of hospitalization in the intensive care unit, of a bla KPC-3 gene carried by a pKpQIL-IT plasmid, and its probable transmission at the bronchial level among different species of Enterobacterales, including K. pneumoniae and S. marcescens. By using whole genome sequence analyses we were able provide insight into the dynamics of carbapenem-resistance determinants acquisition in the lower respiratory tract, a novel anatomical region for such plasmid transmission events, that usually involve the gastrointestinal tract. The co-presence at the same time of both wild-type and resistant Enterobacterales could have been the critical factor leading to the spread of plasmids harbouring carbapenem-resistance genes, of particular importance during surveillance screenings. The possibility of such an event may have significant consequences in terms of antimicrobial treatment, with a potential limitation of therapeutic options, thereby further complicating the clinical management of high-risk critically ill patients.
Collapse
Affiliation(s)
- Alessandra Bielli
- Chemical-Clinical and Microbiological Analysis, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Aurora Piazza
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valeria Cento
- Residency in Microbiology and Virology, Università degli Studi di Milano, Milan, Italy
| | - Francesco Comandatore
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Lepera
- Chemical-Clinical and Microbiological Analysis, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Milo Gatti
- Anesthesiology and Intensive Care 1, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Paolo Brioschi
- Anesthesiology and Intensive Care 1, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Chiara Vismara
- Chemical-Clinical and Microbiological Analysis, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Claudio Bandi
- Biosciences Department, Università degli Studi di Milano, Milan, Italy.,Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Carlo Federico Perno
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy.,Chemical-Clinical and Microbiological Analysis, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
11
|
Emergence of two novel sequence types (3366 and 3367) NDM-1- and OXA-48-co-producing K. pneumoniae in Italy. Eur J Clin Microbiol Infect Dis 2019; 38:1687-1691. [PMID: 31165962 DOI: 10.1007/s10096-019-03597-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023]
Abstract
The aim of this study was to analyze the alarming spread of NDM-1- and OXA-48-co-producing Klebsiella pneumoniae clinical isolates, collected between October 2016 and January 2018 in a neonatal intensive care unit of the University Hospital, Catania, Italy, through whole genome sequencing. All confirmed carbapenem-resistant K. pneumoniae (CRKp) isolates were characterized pheno- and geno-typically, as well as by whole genome sequencing (WGS). A total of 13 CRKp isolates were identified from 13 patients. Pulsed-field gel electrophoresis (PFGE) was performed, and the multilocus sequence typing (MLST) scheme used was based on the gene sequence as published on the MLST Pasteur website. Core genome MLST (cgMLST) was also performed. All isolates co-carried blaoxa-48 and blaNDM-1 genes located on different plasmids belonging to the IncM/L and IncA/C2 groups, respectively. The 13 strains had identical PFGE profiles. MLST and cgMLST showed that K. pneumoniae was dominated by CRKp ST101 and two novel STs (ST3666 and ST3367), identified after submission to the MLST database for ST assignment. All isolates shared the same virulence factors such as type 3 fimbriae, genes for yersiniabactin biosynthesis, yersiniabactin receptor, and iron ABC transporter. They carried the wzi137 variant associated with the K17 serotype. To the best of our knowledge, this is the first report of two novel STs, 3366 and 3367, NDM-OXA-48-co-producing K. pneumoniae clinical isolates, in Italy.
Collapse
|
12
|
Emergence of a Klebsiella pneumoniae ST392 clone harbouring KPC-3 in an Italian transplantation hospital. J Hosp Infect 2017; 98:313-314. [PMID: 29208405 DOI: 10.1016/j.jhin.2017.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 11/24/2022]
|