1
|
S PR, Banerjee R, Drummond CJ, Conn CE. Permanently Charged Cationic Lipids-Evolution from Excipients to Therapeutic Lipids. SMALL SCIENCE 2024; 4:2300270. [PMID: 40212121 PMCID: PMC11935225 DOI: 10.1002/smsc.202300270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/28/2024] [Indexed: 04/13/2025] Open
Abstract
Cationic lipids are crucial in medical and biotechnological applications including cellular transfection and gene delivery. Ionizable cationic lipids are critical components of the mRNA-based COVID vaccines while permanently charged cationic lipids have shown promise in cancer treatment. Despite significant research progress over the past few decades in designing improved, biocompatible cationic lipids, their transfection efficiency remains lower than that of viral vectors. Cationic lipids with additional functionalities like fusogenicity, stimuli-responsiveness, targeting capabilities, and therapeutic activity have been engineered to improve their performance. This review highlights the importance of molecular hybridization toward the design of biocompatible cationic lipids having fusogenic, stimuli-responsive, targeting, or therapeutic properties. This review mainly focuses on cationic lipids, having a permanent positive charge in the headgroup region, as these are typically employed to both increase cellular interactions and for improved loading, particularly for anionic nucleic acid-based therapeutics and vaccines. Structure-activity relationships between the lipid chemical structure (headgroup, spacer, hydrocarbon chain) and, to a lesser extent, the self-assembled nanostructure and the intrinsic biological activity of the multi-functional cationic lipids are described. Finally, the challenges involved in developing smart lipids without affecting their inherent capacity to self-assemble into structured nano-carriers are discussed.
Collapse
Affiliation(s)
- Pushpa Ragini S
- Academy of Scientific and Innovation Research (AcSIR)Ghaziabad201002India
- Department of Oils, Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyHyderabad500 007India
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| | - Rajkumar Banerjee
- Academy of Scientific and Innovation Research (AcSIR)Ghaziabad201002India
- Department of Oils, Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyHyderabad500 007India
| | - Calum J. Drummond
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| | - Charlotte E. Conn
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| |
Collapse
|
2
|
Pushpa Ragini S, Dyett BP, Sarkar S, Zhai J, White JF, Banerjee R, Drummond CJ, Conn CE. A systematic study of the effect of lipid architecture on cytotoxicity and cellular uptake of cationic cubosomes. J Colloid Interface Sci 2024; 663:82-93. [PMID: 38394820 DOI: 10.1016/j.jcis.2024.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
HYPOTHESIS Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Brendan P Dyett
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Sampa Sarkar
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jiali Zhai
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Calum J Drummond
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Charlotte E Conn
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
3
|
Fedorowicz J, Sączewski J. Advances in the Synthesis of Biologically Active Quaternary Ammonium Compounds. Int J Mol Sci 2024; 25:4649. [PMID: 38731869 PMCID: PMC11083083 DOI: 10.3390/ijms25094649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
4
|
Pushpa Ragini S, White J, Kirby N, Banerjee R, Reddy Bathula S, Drummond CJ, Conn CE. Novel bioactive cationic cubosomes enhance the cytotoxic effect of paclitaxel against a paclitaxel resistant prostate cancer cell-line. J Colloid Interface Sci 2023; 649:966-976. [PMID: 37392686 DOI: 10.1016/j.jcis.2023.06.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Hypothesis The study aimed to use molecular hybridization of a cationic lipid with a known pharmacophore to produce a bifunctional lipid having a cationic charge to enhance fusion with the cancer cell surface and biological activity via the pharmacophoric head group. Experiments The novel cationic lipid DMP12 [N-(2-(3-(3,4-dimethoxyphenyl) propanamido) ethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide] was synthesised by conjugating 3-(3,4-dimethoxyphenyl) propanoic acid (or 3,4-dimethoxyhydrocinnamic acid) to twin 12 carbon chains bearing a quaternary ammonium group [N-(2-aminoethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide]. The physicochemical and biological properties of DMP12 were investigated. Cubosome particles consisting of monoolein (MO) doped with DMP12 and paclitaxel were characterized using Small-angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Combination therapy using these cubosomes was assessed in vitro against the gastric (AGS) and prostate (DU-145 and PC-3) cancer cell lines using cytotoxicity assay. Findings Monoolein (MO) cubosomes doped with DMP12 were observed to be toxic against the AGS and DU-145 cell-lines at higher cubosome concentrations (≥100 µg/ml) but had limited activity against the PC-3 cell-line. However, combination therapy consisting of 5 mol% DMP12 and 0.5 mol% paclitaxel (PTX) significantly increased the cytotoxicity against the PC-3 cell-line which was resistant to either DMP12 or PTX individually. The results demonstrate that DMP12 has a prospective role as a bioactive excipient in cancer therapy.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India; School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Surendar Reddy Bathula
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
5
|
Ibrahim MS, Balhaddad AA, Garcia IM, Hefni E, Collares FM, Martinho FC, Weir MD, Xu HHK, Melo MAS. Tooth sealing formulation with bacteria‐killing surface and on‐demand ion release/recharge inhibits early childhood caries key pathogens. J Biomed Mater Res B Appl Biomater 2020; 108:3217-3227. [DOI: 10.1002/jbm.b.34659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/15/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Department of Preventive Dental Sciences, College of Dentistry Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Abdulrahman A. Balhaddad
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Department of Restorative Dental Sciences, College of Dentistry Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Isadora M. Garcia
- Department of Conservative Dentistry, Dental Materials Laboratory, School of Dentistry Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Eman Hefni
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
| | - Fabricio M. Collares
- Department of Conservative Dentistry, Dental Materials Laboratory, School of Dentistry Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Frederico C. Martinho
- Department of Advanced Oral Sciences and Therapeutics University of Maryland School of Dentistry Baltimore Maryland USA
| | - Michael D. Weir
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Department of Advanced Oral Sciences and Therapeutics University of Maryland School of Dentistry Baltimore Maryland USA
| | - Hockin H. K. Xu
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Department of Advanced Oral Sciences and Therapeutics University of Maryland School of Dentistry Baltimore Maryland USA
| | - Mary Anne S. Melo
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Division of Operative Dentistry, Department of General Dentistry University of Maryland School of Dentistry Baltimore Maryland USA
| |
Collapse
|
6
|
Abstract
Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.
Collapse
|
7
|
Rodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, López-Barcenas A, Fabbrocini G, Bardhi B, Sinani A, Sánchez-Blanco E, Arenas-Guzmán R, Hernandez-Castro R. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces 2018; 174:110-125. [PMID: 30447520 DOI: 10.1016/j.colsurfb.2018.11.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023]
Abstract
Candida species, including C. albicans, are part of the mucosal flora of most healthy women, and inhabit the gastrointestinal and genitourinary tracts. Under favourable conditions, they can colonize the vulvovaginal mucosa, giving rise to symptomatic vulvovaginal candidiasis (VVC). The mechanism by which Candida spp. produces inflammation is unknown. Both, the blastoconidia and the pseudohyphae are capable of destroying the vaginal epithelium by direct invasion. Although the symptoms are not always related to the fungal burden, in general, VVC is associated with a greater number of yeasts and pseudohyphae. Some years ago, C. albicans was the species most frequently involved in the different forms of VVC. However, infections by different species have emerged during the last two decades producing an increase in causative species of VVC such as C. glabrata, C. parapsilosis, C. krusei and C. tropicalis. Candida species are pathogenic organisms that have two forms of development: planktonic and biofilm. A biofilm is defined as a community of microorganisms attached to a surface and encompassed by an extracellular matrix. This form of presentation gives microorganisms greater resistance to antifungal agents. This review, about Candia spp. with a special emphasis on Candida albicans discusses specific areas such as biofilm structure and development, cell morphology and biofilm formation, biofilm-associated gene expression, the cell surface and adherence, the extracellular matrix, biofilm metabolism, and biofilm drug resistance in vulvovaginitis biofilms as an important virulence factor in fungi.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Hospital do Meixoeiro and University of Vigo, Vigo, Spain; European Women's Dermatologic and Venereologic Society (EWDVS), Vigo, Spain.
| | - Miguel Carnero Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Adriana López-Barcenas
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Mycology Service, Hospital Manuel Gea González, Mexico City, Mexico
| | | | | | - Ardiana Sinani
- Dermatology Service, Military Medical Unit, University Trauma Hospital, Tirana, Albania
| | | | | | | |
Collapse
|