1
|
Yildirim M, Ozgeris B, Gormez A. The effect of novel β-lactam derivatives synthesized from substituted phenethylamines on resistance genes of MRSA isolates. J Antibiot (Tokyo) 2024; 77:802-811. [PMID: 39210001 DOI: 10.1038/s41429-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
This study focuses on the activity of previously reported imine and β-lactam derivatives against methicillin-resistant Staphylococcus aureus (MRSA) isolates. The presence of mecA and blaZ genes in the isolates was determined, and the minimum inhibitory concentration (MIC) values were determined based on the antibacterial activity against these isolates. Active compounds were selected and their ability to act against resistant isolates in vitro was determined. Concurrently, biochemical (nitrocefin) and molecular (qRT-PCR) tests were used to investigate the ability of the compounds to induce resistance genes in MRSA isolates. The cytotoxicity of the compounds on human dermal fibroblasts (HDF) was investigated. The MIC values of compounds (10) and (12) against MSSA and MRSA isolates were 7.81 and 15.62 μg ml-1, respectively. The most active compounds were identified as (10) and (12), and it was observed that the isolates did not develop resistance to these compounds in vitro. These compounds were found to inhibit β-lactamase, reduce the expression of resistance genes, and exhibit reduced HDF cell toxicity in a dose-dependent manner. According to the findings of the study, it can be concluded that these compounds show promise as hits with an interesting mechanism of action for further chemical modifications to develop new MRSA inhibitors.
Collapse
Affiliation(s)
- Merve Yildirim
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, 25050, Turkey
| | - Bunyamin Ozgeris
- Department of Basic Sciences, Faculty of Science, Erzurum Technical University, Erzurum, 25050, Turkey
| | - Arzu Gormez
- Department of Biology, Faculty of Science, Dokuz Eylul University, Izmir, 35390, Turkey.
| |
Collapse
|
2
|
Bera S, Dastidar P. Selective Separation of Hazardous Chemicals from Vapor Phase by an Easily Accessible Breathing Coordination Polymer Derived from Terpyridyl/terephthalate Mixed Ligands. Chemistry 2023; 29:e202203133. [PMID: 36413099 DOI: 10.1002/chem.202203133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Coordination polymers are extensively studied materials because of their various potential applications. Amongst them, breathing coordination polymers that are capable of exchanging lattice occluded guest molecules with other guests via single-crystal-to-single-crystal (SC-SC) fashion are particularly intriguing. Herein, we disclose an easily accessible breathing coordination polymer namely DMF@Zn-CP capable of exchanging as many as 23 guest molecules of various kinds in SC-SC fashion when the crystals of the coordination polymer were exposed to the corresponding vapor of the guests. Selectivity experiments revealed that it was also capable of separating selectively hazardous chemicals such as dichloro-methane, benzene and fluorobenzene from the corresponding complex mixture of vapors of halomethanes, aromatic hydrocarbons and halobenzenes. The breathing coordination polymer could also be exploited as drug delivery vehicle; slow and sustained release of anti-bacterial agents (benzyl alcohol/phenethyl amine) as guests against both gram positive and gram negative bacteria was evident in zone inhibition assays. A mixed ligand strategy wherein a nitrile containing terpyridyl ligand (L) and terephthalate (TA) co-ligand were reacted with Co(II)/Ni(II)/Zn(II) nitrate salts was adopted herein. Three coordination polymers namely MeOH@Co-CP, DMF/H2 O@Ni-CP and DMF@Zn-CP were isolated and characterized by single crystal X-ray diffraction. Studies revealed that only DMF@Zn-CP possessed the ability to breath in response to the vapors of the guests as stimuli.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
3
|
Substituted phenethylamine-based β-lactam derivatives: Antimicrobial, anticancer, and β-lactamase inhibitory properties. Bioorg Chem 2022; 129:106212. [DOI: 10.1016/j.bioorg.2022.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
|
4
|
Horne SM, Ugrinov A, Prüβ BM. The Food Anti-Microbials β-Phenylethylamine (-HCl) and Ethyl Acetoacetate Do Not Change during the Heating Process. Antibiotics (Basel) 2021; 10:antibiotics10040418. [PMID: 33920266 PMCID: PMC8069388 DOI: 10.3390/antibiotics10040418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
β-Phenylethylamine hydrochloride (PEA-HCl) and ethyl acetoacetate (EAA) are anti-microbials with applications in food processing. As food anti-microbials, the compounds will have to withstand the cooking process without changing to toxic compounds. With this Communication, we address the question of whether PEA and EAA are altered when heated to 73.9 °C or 93.3 °C. A combination of gas chromatography and mass spectrometry was used to analyze solutions of PEA(-HCl) or EAA in beef broth or water. In addition, the anti-microbial activity of PEA-HCl and EAA was compared between heated and unheated samples at a range of concentrations. The gas chromatograms of PEA(-HCl) and EAA showed one peak at early retention times that did not differ between the heated and unheated samples. The mass spectra for PEA and EAA were near identical to those from a spectral database and did not show any differences between the heated and unheated samples. We conclude that PEA(-HCl) and EAA formed pure solutions and were not altered during the heating process. In addition, the anti-microbial activity of PEA-HCl and EAA did not change after the heating of the compounds. Regardless of temperature, the minimal inhibitory concentrations (MICs) for PEA-HCl were 20.75 mmol mL−1 for Escherichia coli and Salmonella enterica serotype Typhimurium. For EAA, the MICs were 23.4 mmol mL−1 for E. coli and 15.6 mmol mL−1 for S. enterica.
Collapse
Affiliation(s)
- Shelley M. Horne
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA;
| | - Birgit M. Prüβ
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
- Correspondence: ; Tel.: +1-701-231-7848
| |
Collapse
|
5
|
Yeh HY, Line JE, Hinton A, Gao Y, Zhuang H. Bacterial Community Assessed by Utilization of Single Carbon Sources in Broiler Ground Meat after Treatment with an Antioxidant, Carnosine, and Cold Plasma. J Food Prot 2020; 83:1967-1973. [PMID: 32609819 DOI: 10.4315/jfp-20-063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Contaminated poultry meat is a major source of human foodborne illnesses. Many interventions have been developed to reduce and/or eliminate human foodborne pathogens in poultry products; however, treatments with cold plasma or carnosine or their combination have not been extensively investigated. In this study, the bacterial microflora of poultry meat samples after treatments with cold plasma and carnosine were characterized with EcoPlates in the OmniLog system. The plates were incubated at 25°C for 7 days in the OmniLog chamber, and bacterial growth was monitored by recording formazan production every 30 min at an optical density of 590 nm. The kinetics of lag, log, and stationary phases of bacterial growth followed the Gompertz sigmoidal model but with different inflection times and asymptotes at the log phase and the stationary phase, respectively. Results indicated that treatment of poultry meat samples with cold plasma technology and carnosine could inhibit growth of the bacteria in the treated meat samples. Of 31 chemicals tested, phenylethylamine, α-d-lactose, d,l-α-glycerol phosphate, 2-hydroxybenzoic acid, γ-hydroxybutyric acid, α-ketobutyric acid, and d-malic acid could not be metabolized by bacteria in the meat samples. Future research is required to determine whether these seven chemicals that inhibited growth of bacteria in these meat samples can be used as food preservatives for extending the shelf life of these products. Whether the bacterial flora can be an indicator of effectiveness for meat samples treated with cold plasma, carnosine, or both needs further study. HIGHLIGHTS
Collapse
Affiliation(s)
- Hung-Yueh Yeh
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, 950 College Station Road, Athens, Georgia 30605-2720, USA (ORCID: https://orcid.org/0000-0003-0806-2428 [H.Y.Y.])
| | - John E Line
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, 950 College Station Road, Athens, Georgia 30605-2720, USA (ORCID: https://orcid.org/0000-0003-0806-2428 [H.Y.Y.])
| | - Arthur Hinton
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, 950 College Station Road, Athens, Georgia 30605-2720, USA (ORCID: https://orcid.org/0000-0003-0806-2428 [H.Y.Y.])
| | - Yue Gao
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Quality and Safety Assessment Research Unit, 950 College Station Road, Athens, Georgia 30605-2720, USA.,National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.,Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, People's Republic of China
| | - Hong Zhuang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Quality and Safety Assessment Research Unit, 950 College Station Road, Athens, Georgia 30605-2720, USA
| |
Collapse
|
6
|
Muchaamba F, Stephan R, Tasara T. β-Phenylethylamine as a Natural Food Additive Shows Antimicrobial Activity against Listeria monocytogenes on Ready-to-Eat Foods. Foods 2020; 9:E1363. [PMID: 32992828 PMCID: PMC7600551 DOI: 10.3390/foods9101363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen and a major cause of death associated with bacterial foodborne infections. Control of L. monocytogenes on most ready-to-eat (RTE) foods remains a challenge. The potential use of β-phenylethylamine (PEA) as an organic antimicrobial against L. monocytogenes was evaluated in an effort to develop a new intervention for its control. Using a collection of 62 clinical and food-related isolates we determined the minimum inhibitory concentration (MIC) of PEA against L. monocytogenes in different broth and agar media. Bologna type sausage (lyoner) and smoked salmon were used as food model systems to validate the in vitro findings. PEA had a growth inhibitory and bactericidal effect against L. monocytogenes both in in vitro experiments as well as on lyoner and smoked salmon. The MIC's ranged from 8 to 12.5 mg/mL. Furthermore, PEA also inhibited L. monocytogenes biofilm formation. Based on good manufacturing practices as a prerequisite, the application of PEA to RTE products might be an additional hurdle to limit L. monocytogenes growth thereby increasing food safety.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (R.S.); (T.T.)
| | | | | |
Collapse
|