1
|
Chai S, Wang L, Du H, Jiang H. Achievement and Challenges in Orthohantavirus Vaccines. Vaccines (Basel) 2025; 13:198. [PMID: 40006744 PMCID: PMC11861054 DOI: 10.3390/vaccines13020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Orthohantaviruses (also known as hantaviruses) are pathogens that cause two distinct, yet related forms of severe human disease: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases pose a significant threat to global public health due to their high case fatality rates, which can range from 1% to 50%. In recent years, an increasing number of countries and regions have reported human cases, underscoring the urgent need for improved understanding, prevention, and treatment strategies. Given the severity of these diseases and the lack of specific post-exposure antiviral treatments, preventive measures are critical. For several decades, substantial efforts have been dedicated to developing orthohantavirus vaccines, leading to significant advancements. The first large-scale deployment involved inactivated vaccines, which played a crucial role in reducing HFRS incidence in South Korea and China. Subunit vaccines, viral vector vaccines, and virus-like particle (VLP) vaccines have also been extensively researched. Nucleic acid vaccines, including both mRNA and DNA vaccines, hold the greatest potential for future development due to their rapid design and production cycles, ability to elicit robust immune responses, ease of storage and transportation, and adaptable production platforms. Ongoing advancements in computer technology and artificial intelligence promise to further enhance the development of more effective orthohantavirus vaccines.
Collapse
Affiliation(s)
- Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, TangDu Hospital, The Fourth Military Medical University, Xi’an 710038, China;
| | - Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China;
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, TangDu Hospital, The Fourth Military Medical University, Xi’an 710038, China;
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, TangDu Hospital, The Fourth Military Medical University, Xi’an 710038, China;
| |
Collapse
|
2
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
3
|
Lu W, Kuang L, Hu Y, Shi J, Li Q, Tian W. Epidemiological and clinical characteristics of death from hemorrhagic fever with renal syndrome: a meta-analysis. Front Microbiol 2024; 15:1329683. [PMID: 38638893 PMCID: PMC11024303 DOI: 10.3389/fmicb.2024.1329683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Hemorrhagic fever with renal syndrome (HFRS) is an acute infectious disease comprising five stages: fever, hypotension, oliguria, diuresis (polyuria), and convalescence. Increased vascular permeability, coagulopathy, and renal injury are typical clinical features of HFRS, which has a case fatality rate of 1-15%. Despite this, a comprehensive meta-analyses of the clinical characteristics of patients who died from HFRS is lacking. Methods Eleven Chinese- and English-language research databases were searched, including the China National Knowledge Infrastructure Database, Wanfang Database, SinoMed, VIP Database, PubMed, Embase, Scopus, Cochrane Library, Web of Science, Proquest, and Ovid, up to October 5, 2023. The search focused on clinical features of patients who died from HFRS. The extracted data were analyzed using STATA 14.0. Results A total of 37 articles on 140,295 patients with laboratory-confirmed HFRS were included. Categorizing patients into those who died and those who survived, it was found that patients who died were older and more likely to smoke, have hypertension, and have diabetes. Significant differences were also observed in the clinical manifestations of multiple organ dysfunction syndrome, shock, occurrence of overlapping disease courses, cerebral edema, cerebral hemorrhage, toxic encephalopathy, convulsions, arrhythmias, heart failure, dyspnea, acute respiratory distress syndrome, pulmonary infection, liver damage, gastrointestinal bleeding, acute kidney injury, and urine protein levels. Compared to patients who survived, those who died were more likely to demonstrate elevated leukocyte count; decreased platelet count; increased lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels; prolonged activated partial thromboplastin time and prothrombin time; and low albumin and chloride levels and were more likely to use continuous renal therapy. Interestingly, patients who died received less dialysis and had shorter average length of hospital stay than those who survived. Conclusion Older patients and those with histories of smoking, hypertension, diabetes, central nervous system damage, heart damage, liver damage, kidney damage, or multiorgan dysfunction were at a high risk of death. The results can be used to assess patients' clinical presentations and assist with prognostication.Systematic review registration:https://www.crd.york.ac.uk/prospero/, (CRD42023454553).
Collapse
Affiliation(s)
- Wei Lu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Kuang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxing Hu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jialing Shi
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Tian
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Corrigendum: Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1343080. [PMID: 38149269 PMCID: PMC10750826 DOI: 10.3389/fmicb.2023.1343080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2023.1233433.].
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
5
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1233433. [PMID: 37901807 PMCID: PMC10601933 DOI: 10.3389/fmicb.2023.1233433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Hantaviruses are a significant and emerging global public health threat, impacting more than 200,000 individuals worldwide each year. The single-stranded RNA viruses belong to the Hantaviridae family and are responsible for causing two acute febrile diseases in humans: Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Currently, there are no licensed treatments or vaccines available globally for HTNV infection. Various candidate drugs have shown efficacy in increasing survival rates during the early stages of HTNV infection. Some of these drugs include lactoferrin, ribavirin, ETAR, favipiravir and vandetanib. Immunotherapy utilizing neutralizing antibodies (NAbs) generated from Hantavirus convalescent patients show efficacy against HTNV. Monoclonal antibodies such as MIB22 and JL16 have demonstrated effectiveness in protecting against HTNV infection. The development of vaccines and antivirals, used independently and/or in combination, is critical for elucidating hantaviral infections and the impact on public health. RNA interference (RNAi) arised as an emerging antiviral therapy, is a highly specific degrades RNA, with post-transcriptional mechanism using eukaryotic cells platform. That has demonstrated efficacy against a wide range of viruses, both in vitro and in vivo. Recent antiviral methods involve using small interfering RNA (siRNA) and other, immune-based therapies to target specific gene segments (S, M, or L) of the Hantavirus. This therapeutic approach enhances viral RNA clearance through the RNA interference process in Vero E6 cells or human lung microvascular endothelial cells. However, the use of siRNAs faces challenges due to their low biological stability and limited in vivo targeting ability. Despite their successful inhibition of Hantavirus replication in host cells, their antiviral efficacy may be hindered. In the current review, we focus on advances in therapeutic strategies, as antiviral medications, immune-based therapies and vaccine candidates aimed at enhancing the body's ability to control the progression of Hantavirus infections, with the potential to reduce the risk of severe disease.
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
6
|
Chen T, Ding Z, Lan J, Wong G. Advances and perspectives in the development of vaccines against highly pathogenic bunyaviruses. Front Cell Infect Microbiol 2023; 13:1174030. [PMID: 37274315 PMCID: PMC10234439 DOI: 10.3389/fcimb.2023.1174030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Increased human activities around the globe and the rapid development of once rural regions have increased the probability of contact between humans and wild animals. A majority of bunyaviruses are of zoonotic origin, and outbreaks may result in the substantial loss of lives, economy contraction, and social instability. Many bunyaviruses require manipulation in the highest levels of biocontainment, such as Biosafety Level 4 (BSL-4) laboratories, and the scarcity of this resource has limited the development speed of vaccines for these pathogens. Meanwhile, new technologies have been created, and used to innovate vaccines, like the mRNA vaccine platform and bioinformatics-based antigen design. Here, we summarize current vaccine developments for three different bunyaviruses requiring work in the highest levels of biocontainment: Crimean-Congo Hemorrhagic Fever Virus (CCHFV), Rift Valley Fever Virus (RVFV), and Hantaan virus (HTNV), and provide perspectives and potential future directions that can be further explored to advance specific vaccines for humans and livestock.
Collapse
Affiliation(s)
- Tong Chen
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Ding
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
7
|
Hoffmann M, Gerlach S, Takamiya M, Tarazi S, Hersch N, Csiszár A, Springer R, Dreissen G, Scharr H, Rastegar S, Beil T, Strähle U, Merkel R, Hoffmann B. Smuggling on the Nanoscale-Fusogenic Liposomes Enable Efficient RNA-Transfer with Negligible Immune Response In Vitro and In Vivo. Pharmaceutics 2023; 15:pharmaceutics15041210. [PMID: 37111695 PMCID: PMC10146161 DOI: 10.3390/pharmaceutics15041210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The efficient and biocompatible transfer of nucleic acids into mammalian cells for research applications or medical purposes is a long-standing, challenging task. Viral transduction is the most efficient transfer system, but often entails high safety levels for research and potential health impairments for patients in medical applications. Lipo- or polyplexes are commonly used transfer systems but result in comparably low transfer efficiencies. Moreover, inflammatory responses caused by cytotoxic side effects were reported for these transfer methods. Often accountable for these effects are various recognition mechanisms for transferred nucleic acids. Using commercially available fusogenic liposomes (Fuse-It-mRNA), we established highly efficient and fully biocompatible transfer of RNA molecules for in vitro as well as in vivo applications. We demonstrated bypassing of endosomal uptake routes and, therefore, of pattern recognition receptors that recognize nucleic acids with high efficiency. This may underlie the observed almost complete abolishment of inflammatory cytokine responses. RNA transfer experiments into zebrafish embryos and adult animals fully confirmed the functional mechanism and the wide range of applications from single cells to organisms.
Collapse
Affiliation(s)
- Marco Hoffmann
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sven Gerlach
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Samar Tarazi
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Nils Hersch
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Agnes Csiszár
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ronald Springer
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Georg Dreissen
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hanno Scharr
- IAS-8: Data Analytics and Machine Learning, Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Rudolf Merkel
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Bernd Hoffmann
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
8
|
Sehgal A, Mehta S, Sahay K, Martynova E, Rizvanov A, Baranwal M, Chandy S, Khaiboullina S, Kabwe E, Davidyuk Y. Hemorrhagic Fever with Renal Syndrome in Asia: History, Pathogenesis, Diagnosis, Treatment, and Prevention. Viruses 2023; 15:v15020561. [PMID: 36851775 PMCID: PMC9966805 DOI: 10.3390/v15020561] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hemorrhagic Fever with Renal Syndrome (HFRS) is the most frequently diagnosed zoonosis in Asia. This zoonotic infection is the result of exposure to the virus-contaminated aerosols. Orthohantavirus infection may cause Hemorrhagic Fever with Renal Syndrome (HRFS), a disease that is characterized by acute kidney injury and increased vascular permeability. Several species of orthohantaviruses were identified as causing infection, where Hantaan, Puumala, and Seoul viruses are most common. Orthohantaviruses are endemic to several Asian countries, such as China, South Korea, and Japan. Along with those countries, HFRS tops the list of zoonotic infections in the Far Eastern Federal District of Russia. Recently, orthohantavirus circulation was demonstrated in small mammals in Thailand and India, where orthohantavirus was not believed to be endemic. In this review, we summarized the current data on orthohantaviruses in Asia. We gave the synopsis of the history and diversity of orthohantaviruses in Asia. We also described the clinical presentation and current understanding of the pathogenesis of orthohantavirus infection. Additionally, conventional and novel approaches for preventing and treating orthohantavirus infection are discussed.
Collapse
Affiliation(s)
- Ayushi Sehgal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sanya Mehta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Ekaterina Martynova
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Albert Rizvanov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sara Chandy
- Childs Trust Medical Research Foundation, Kanchi Kamakoti Childs Trust Hospital, Chennai 600034, India
| | - Svetlana Khaiboullina
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Emmanuel Kabwe
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan Research Institute of Epidemiology and Microbiology, Kazan 420012, Russia
| | - Yuriy Davidyuk
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence:
| |
Collapse
|
9
|
Soto JA, Díaz FE, Retamal-Díaz A, Gálvez NMS, Melo-González F, Piña-Iturbe A, Ramírez MA, Bohmwald K, González PA, Bueno SM, Kalergis AM. BCG-Based Vaccines Elicit Antigen-Specific Adaptive and Trained Immunity against SARS-CoV-2 and Andes orthohantavirus. Vaccines (Basel) 2022; 10:vaccines10050721. [PMID: 35632475 PMCID: PMC9143576 DOI: 10.3390/vaccines10050721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Background:Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is a live attenuated vaccine mainly administered to newborns and used for over 100 years to prevent the disease caused by Mycobacterium tuberculosis (M. tb). This vaccine can induce immune response polarization towards a Th1 profile, which is desired for counteracting M. tb, other mycobacteria, and unrelated intracellular pathogens. The vaccine BCG has been used as a vector to express recombinant proteins and has been shown to protect against several diseases, particularly respiratory viruses. Methods: BCG was used to develop recombinant vaccines expressing either the Nucleoprotein from SARS-CoV-2 or Andes orthohantavirus. Mice were immunized with these vaccines with the aim of evaluating the safety and immunogenicity parameters. Results: Immunization with two doses of 1 × 108 CFU or one dose of 1 × 105 CFU of these BCGs was safe in mice. A statistically significant cellular immune response was induced by both formulations, characterized as the activation of CD4+ and CD8+ T cells. Stimulation with unrelated antigens resulted in increased expression of activation markers by T cells and secretion of IL-2 and IFN-γ, while increased secretion of IL-6 was found for both recombinant vaccines; all of these parameters related to a trained immunity profile. The humoral immune response elicited by both vaccines was modest, but further exposure to antigens could increase this response. Conclusions: The BCG vaccine is a promising platform for developing vaccines against different pathogens, inducing a marked antigen-specific immune response.
Collapse
Affiliation(s)
- Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 7550196, Chile
| | - Fabián E. Díaz
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Angello Retamal-Díaz
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Nicolás M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Felipe Melo-González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 7550196, Chile
| | - Alejandro Piña-Iturbe
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Pablo A. González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Correspondence: or ; Tel.: +56-2-686-2842
| |
Collapse
|
10
|
Ismail S, Abbasi SW, Yousaf M, Ahmad S, Muhammad K, Waheed Y. Design of a Multi-Epitopes Vaccine against Hantaviruses: An Immunoinformatics and Molecular Modelling Approach. Vaccines (Basel) 2022; 10:378. [PMID: 35335010 PMCID: PMC8953224 DOI: 10.3390/vaccines10030378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Hantaviruses are negative-sense, enveloped, single-stranded RNA viruses of the family Hantaviridae. In recent years, rodent-borne hantaviruses have emerged as novel zoonotic viruses posing a substantial health issue and socioeconomic burden. In the current research, a reverse vaccinology approach was applied to design a multi-epitope-based vaccine against hantavirus. A set of 340 experimentally reported epitopes were retrieved from Virus Pathogen Database and Analysis Resource (ViPR) and subjected to different analyses such as antigenicity, allergenicity, solubility, IFN gamma, toxicity, and virulent checks. Finally, 10 epitopes which cleared all the filters used were linked with each other through specific GPGPG linkers to construct a multi-antigenic epitope vaccine. The designed vaccine was then joined to three different adjuvants-TLR4-agonist adjuvant, β-defensin, and 50S ribosomal protein L7/L12-using an EAAAK linker to boost up immune-stimulating responses and check the potency of vaccine with each adjuvant. The designed vaccine structures were modelled and subjected to error refinement and disulphide engineering to enhance their stability. To understand the vaccine binding affinity with immune cell receptors, molecular docking was performed between the designed vaccines and TLR4; the docked complex with a low level of global energy was then subjected to molecular dynamics simulations to validate the docking results and dynamic behaviour. The docking binding energy of vaccines with TLR4 is -29.63 kcal/mol (TLR4-agonist), -3.41 kcal/mol (β-defensin), and -11.03 kcal/mol (50S ribosomal protein L7/L12). The systems dynamics revealed all three systems to be highly stable with a root-mean-square deviation (RMSD) value within 3 Å. To test docking predictions and determine dominant interaction energies, binding free energies of vaccine(s)-TLR4 complexes were calculated. The net binding energy of the systems was as follows: TLR4-agonist vaccine with TLR4 (MM-GBSA, -1628.47 kcal/mol and MM-PBSA, -37.75 kcal/mol); 50S ribosomal protein L7/L12 vaccine with TLR4 complex (MM-GBSA, -194.62 kcal/mol and MM-PBSA, -150.67 kcal/mol); β-defensin vaccine with TLR4 complex (MM-GBSA, -9.80 kcal/mol and MM-PBSA, -42.34 kcal/mol). Finally, these findings may aid experimental vaccinologists in developing a very potent hantavirus vaccine.
Collapse
Affiliation(s)
- Saba Ismail
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, The Mall, Rawalpindi 46000, Pakistan;
| | - Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| |
Collapse
|
11
|
Ashique S, Sandhu NK, Das S, Haque SN, Koley K. Global Comprehensive Outlook of Hantavirus Contagion on Humans: A Review. Infect Disord Drug Targets 2022; 22:e050122199975. [PMID: 34986775 DOI: 10.2174/1871526522666220105110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Hantaviruses are rodent viruses that have been identified as etiologic agents of 2 diseases of humans: hemorrhagic fever with renal syndrome (HFRS) and nephropathiaepidemica (NE) in the Old World and Hantavirus pulmonary syndrome (HPS) in the New World. Orthohantavirus is a genus of sin- gle-stranded, enveloped, negative-sense RNA viruses in the family Hantaviridae of the order Bunyavi- rales. The important reservoir of Hantaviruses is rodents. Each virus serotype has its unique rodent host species and is transmitted to human beings with the aid of aerosolized virus, which is shed in urine, fae- ces and saliva and hardly by a bite of the contaminated host. Andes virus is the only Hantavirus identified to be transmitted from human-to-human and its major signs and symptoms include fever, headache, mus- cle aches, lungs filled with fluid etc. In the early 1993, this viral syndrome appeared in the Four Cor- ner location in the south western United States. The only accepted therapeutics for this virus is Ribavirin. Recently, serological examinations to identify Hantavirus antibodies have become most popular for in- vestigation among humans and rodent reservoirs.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Navjot K Sandhu
- Department of Pharmaceuti- cal Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Supratim Das
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sk Niyamul Haque
- Department of Pharmaceutics, Gurunanak Insti- tute of Pharmaceutical Science and Technology, Kolkata, West Bengal-700110, India
| | - Kartick Koley
- Department of Pharmaceutics, Gurunanak Insti- tute of Pharmaceutical Science and Technology, Kolkata, West Bengal-700110, India
| |
Collapse
|
12
|
Shkair L, Garanina EE, Martynova EV, Kolesnikova AI, Arkhipova SS, Titova AA, Rizvanov AA, Khaiboullina SF. Immunogenic Properties of MVs Containing Structural Hantaviral Proteins: An Original Study. Pharmaceutics 2022; 14:pharmaceutics14010093. [PMID: 35056989 PMCID: PMC8779827 DOI: 10.3390/pharmaceutics14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an emerging infectious disease that remains a global public health threat. The highest incidence rate is among zoonotic disease cases in Russia. Most cases of HFRS are reported in the Volga region of Russia, which commonly identifies the Puumala virus (PUUV) as a pathogen. HFRS management is especially challenging due to the lack of specific treatments and vaccines. This study aims to develop new approaches for HFRS prevention. Our goal is to test the efficacy of microvesicles (MVs) as PUUV nucleocapsid (N) and glycoproteins (Gn/Gc) delivery vehicles. Our findings show that MVs could deliver the PUUV N and Gn/Gc proteins in vitro. We have also demonstrated that MVs loaded with PUUV proteins could elicit a specific humoral and cellular immune response in vivo. These data suggest that an MV-based vaccine could control HFRS.
Collapse
|
13
|
Saavedra F, Díaz FE, Retamal‐Díaz A, Covián C, González PA, Kalergis AM. Immune response during hantavirus diseases: implications for immunotherapies and vaccine design. Immunology 2021; 163:262-277. [PMID: 33638192 PMCID: PMC8207335 DOI: 10.1111/imm.13322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Orthohantaviruses, previously named hantaviruses, cause two emerging zoonotic diseases: haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Overall, over 200 000 cases are registered every year worldwide, with a fatality rate ranging between 0·1% and 15% for HFRS and between 20% and 40% for HCPS. No specific treatment or vaccines have been approved by the U.S. Food and Drug Administration (FDA) to treat or prevent hantavirus-caused syndromes. Currently, little is known about the mechanisms at the basis of hantavirus-induced disease. However, it has been hypothesized that an excessive inflammatory response plays an essential role in the course of the disease. Furthermore, the contributions of the cellular immune response to either viral clearance or pathology have not been fully elucidated. This article discusses recent findings relative to the immune responses elicited to hantaviruses in subjects suffering HFRS or HCPS, highlighting the similarities and differences between these two clinical diseases. Also, we summarize the most recent data about the cellular immune response that could be important for designing new vaccines to prevent this global public health problem.
Collapse
Affiliation(s)
- Farides Saavedra
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Fabián E. Díaz
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Angello Retamal‐Díaz
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Camila Covián
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Pablo A. González
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- Millennium Institute on Immunology and ImmunotherapyDepartamento de EndocrinologíaFacultad de MedicinaEscuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
14
|
Munir N, Jahangeer M, Hussain S, Mahmood Z, Ashiq M, Ehsan F, Akram M, Ali Shah SM, Riaz M, Sana A. Hantavirus diseases pathophysiology, their diagnostic strategies and therapeutic approaches: A review. Clin Exp Pharmacol Physiol 2021; 48:20-34. [PMID: 32894790 DOI: 10.1111/1440-1681.13403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Hantaviruses are enveloped negative (-) single-stranded RNA viruses belongs to Hantaviridae family, hosted by small rodents and entering into the human body through inhalation, causing haemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) also known as hantavirus cardiopulmonary syndrome (HCPS). Hantaviruses infect approximately more than 200 000 people annually all around the world and its mortality rate is about 35%-40%. Hantaviruses play significant role in affecting the target cells as these inhibit the apoptotic factor in these cells. These viruses impair the integrity of endothelial barrier due to an excessive innate immune response that is proposed to be central in the pathogenesis and is a hallmark of hantavirus disease. A wide range of different diagnostic tools including polymerase chain reaction (PCR), focus reduction neutralization test (FRNT), enzyme-linked immunosorbent assay (ELISA), immunoblot assay (IBA), immunofluorescence assay (IFA), and other molecular techniques are used as detection tools for hantavirus in the human body. Now the availability of therapeutic modalities is the major challenge to control this deadly virus because still no FDA approved drug or vaccine is available. Antiviral agents, DNA-based vaccines, polyclonal and monoclonal antibodies neutralized the viruses so these techniques are considered as the hope for the treatment of hantavirus disease. This review has been compiled to provide a comprehensive overview of hantaviruses disease, its pathophysiology, diagnostic tools and the treatment approaches to control the hantavirus infection.
Collapse
Affiliation(s)
- Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shoukat Hussain
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mehvish Ashiq
- Department of Chemistry, The Women University Multan, Multan, Pakistan
| | - Fatima Ehsan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Aneezah Sana
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
15
|
Dheerasekara K, Sumathipala S, Muthugala R. Hantavirus Infections-Treatment and Prevention. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020; 12:410-421. [PMID: 33144850 PMCID: PMC7594967 DOI: 10.1007/s40506-020-00236-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Purpose of review Hantavirus infection is an emerging zoonosis and there are two main clinical presentations, hemorrhagic fever with renal syndrome (HFRS) and Hantavirus pulmonary syndrome (HPS). Although Hantavirus infections have a worldwide distribution with a high mortality rate, a safe and effective vaccine or an antiviral drug against the Hantavirus disease is yet to be available. This review summarizes all the efforts undertaken to develop medical countermeasures in vitro, in vivo, and human clinical trials against Hantavirus infections. Recent findings Multiple antivirals are shown to be effective with limited evidence and recent studies on immunotherapy were not very conclusive. There are multiple vaccine candidates with evidence of conferring long protective immunity against Hantaviruses. Some of these had been already trialed on humans. Summary At present, severe HPS or HFRS case management is purely based on supportive treatments, often in an intensive care unit. Rodent control and public health education and promotion play a major role in preventing Hantavirus infection.
Collapse
Affiliation(s)
| | - Saranga Sumathipala
- Department of Virology, Teaching Hospital Anuradhapura, Anuradhapura, Sri Lanka
| | | |
Collapse
|
16
|
Liu R, Ma H, Shu J, Zhang Q, Han M, Liu Z, Jin X, Zhang F, Wu X. Vaccines and Therapeutics Against Hantaviruses. Front Microbiol 2020; 10:2989. [PMID: 32082263 PMCID: PMC7002362 DOI: 10.3389/fmicb.2019.02989] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Hantaviruses (HVs) are rodent-transmitted viruses that can cause hantavirus cardiopulmonary syndrome (HCPS) in the Americas and hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Together, these viruses have annually caused approximately 200,000 human infections worldwide in recent years, with a case fatality rate of 5–15% for HFRS and up to 40% for HCPS. There is currently no effective treatment available for either HFRS or HCPS. Only whole virus inactivated vaccines against HTNV or SEOV are licensed for use in the Republic of Korea and China, but the protective efficacies of these vaccines are uncertain. To a large extent, the immune correlates of protection against hantavirus are not known. In this review, we summarized the epidemiology, virology, and pathogenesis of four HFRS-causing viruses, HTNV, SEOV, PUUV, and DOBV, and two HCPS-causing viruses, ANDV and SNV, and then discussed the existing knowledge on vaccines and therapeutics against these diseases. We think that this information will shed light on the rational development of new vaccines and treatments.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiayi Shu
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education & Health, Shanghai Medical College, Fudan University, Shanghai, China.,Viral Disease and Vaccine Translational Research Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Mingwei Han
- Cadet Brigade, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xia Jin
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education & Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Progress on the Prevention and Treatment of Hantavirus Disease. Viruses 2019; 11:v11070610. [PMID: 31277410 PMCID: PMC6669544 DOI: 10.3390/v11070610] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Hantaviruses, members of the order Bunyavirales, family Hantaviridae, have a world-wide distribution and are responsible for greater than 150,000 cases of disease per year. The spectrum of disease associated with hantavirus infection include hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) also known as hantavirus cardiopulmonary syndrome (HCPS). There are currently no FDA-approved vaccines or treatments for these hantavirus diseases. This review provides a summary of the status of vaccine and antiviral treatment efforts including those tested in animal models or human clinical trials.
Collapse
|