1
|
Grayson F, Loman L, Nonnenmacher T, Pople D, Pollard J, Patel B, Williams D, Hounsome L, Hopkins KL, Robotham JV, Ledda A. Plasmid conjugation drives within-patient plasmid diversity. Microb Genom 2025; 11. [PMID: 40111255 PMCID: PMC11925198 DOI: 10.1099/mgen.0.001361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Plasmids are well-known vehicles of antimicrobial resistance (AMR) gene dissemination. Through conjugation, plasmid-encoded AMR genes are spread among neighbouring bacteria, irrespective of their strain or even their species. This process is very concerning from a public health perspective, as plasmid-borne AMR gene outbreaks are often not confined to single species or strains and are therefore more difficult to fully uncover. At the moment, the impact of plasmid conjugation on within-patient plasmid diversity is not well understood. In this work, we will tackle the role of conjugation on within-patient plasmid diversity using a dataset of carbapenemase-producing Enterobacterales. The dataset of 256 sequences originates from bacterial isolates cultured from 115 English patients over 30 months. Each patient has more than one sequence, with at least one sequence carrying an OXA-48 gene, a well-known plasmid-borne carbapenemase-encoding gene. If more than one sequence carries the OXA-48 gene, they are carried in different bacterial hosts. Using a hybrid de novo-on-reference assembly pipeline, we were able to reconstruct the full OXA-48 plasmid from short read sequencing data for 232 of the 256 sequences. Of the 115 patients, 83 (72%) patients had an identical OXA-48 plasmid in two or more sequences. Only two patients carried very different (>200 SNPs) alleles of the OXA-48 plasmid, probably from separate acquisitions. Our study shows that when more than one bacterial host carrying an OXA-48 plasmid is found in a patient, it is most likely that the same plasmid has been shared via conjugation. The event of separate acquisition of different plasmids in different bacterial hosts is highly unlikely in our dataset.
Collapse
Affiliation(s)
- Fan Grayson
- Advanced Analytics, Analysis & Intelligence Assessment, Chief Data Officer Group, UK Health Security Agency, London, UK
| | - Leo Loman
- Advanced Analytics, Analysis & Intelligence Assessment, Chief Data Officer Group, UK Health Security Agency, London, UK
| | - Toby Nonnenmacher
- Chief Data Officer Group Private Office, Chief Data Officer Group, UK Health Security Agency, London, UK
| | - Diane Pople
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
| | - Jack Pollard
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
| | - Bharat Patel
- Public Health Microbiology Division, Science Group, UK Health Security Agency, London, UK
| | - David Williams
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
| | - Luke Hounsome
- Advanced Analytics, Analysis & Intelligence Assessment, Chief Data Officer Group, UK Health Security Agency, London, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health Microbiology Division, UK Health Security Agency, London, UK
- Antimicrobial Resistance and Prescribing, AMR & HCAI Division, UK Health Security Agency, London, UK
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associate Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Julie V Robotham
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associate Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Alice Ledda
- HCAI & AMR Modelling and Evaluation, AMR & HCAI Division, UK Health Security Agency, London, UK
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associate Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Martel N, Conquet G, Sababadichetty L, Benavides JA, Godreuil S, Miltgen G, Dupont C. Neglected class A carbapenemases: Systematic review of IMI/NmcA and FRI from a One Health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178300. [PMID: 39754943 DOI: 10.1016/j.scitotenv.2024.178300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Carbapenemase-producing Enterobacterales are pathogens classified as a critical priority by the World Health Organization and a burden on human health worldwide. IMI, NmcA, and FRI are under-detected class A carbapenemases that have been reported in the human, animal and environmental compartments, particularly these last 5 years. Bacteria producing these carbapenemases have been mostly identified in digestive carriage screenings, but they are also involved in severe infections, such as bacteremia. Their increasing detection in wild fauna and natural environments confirms their ubiquitous nature. Indeed, they have been especially found in aquatic ecosystems and in many animals living in close association with them. Therefore, the hydric compartment is suspected to be the main reservoir of IMI carbapenemases. Although they are almost confined to Enterobacter cloacae complex species, some variants are plasmid-encoded and may diffuse to other bacterial species that are more virulent or more adapted to humans. Furthermore, their association with other resistance mechanisms, such as Extended Spectrum Beta-Lactamases, leaves only few therapeutic options and raises concerns about the environmental spread of Multi-Drug-Resistant bacteria. These carbapenemase might be responsible of "mixed" outbreaks of CPE with a community origin and a possible secondary nosocomial spread. Therefore, more studies from a One Health perspective are needed to identify as many primary environmental (aquatic) reservoirs as possible, as well as secondary distribution routes (directly from the environment, via the food chain or animals…) which may also become secondary reservoirs for these carbapenemases, in order to implement measures to combat this potential emerging threat to humans. This review summarizes the main characteristics of the IMI, NmcA, and FRI carbapenemases, covering their detection, epidemiology, genetic environment, and associated resistance genes using a One Health approach.
Collapse
Affiliation(s)
- Nicolas Martel
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.
| | - Guilhem Conquet
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Loïk Sababadichetty
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Julio A Benavides
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Guillaume Miltgen
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France; Biology Department, Maynooth National University of Ireland, Maynooth, Ireland; Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France; Centre Régional en Antibiothérapie (CRAtb) de La Réunion, Saint-Pierre, La Réunion, France
| | - Chloé Dupont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
3
|
Gonzalez C, Oueslati S, Rima M, Nermont R, Dortet L, Hopkins KL, Iorga BI, Bonnin RA, Naas T. Molecular, Genetic, and Biochemical Characterization of OXA-484 Carbapenemase, a Difficult-to-Detect R214G Variant of OXA-181. Microorganisms 2024; 12:1391. [PMID: 39065158 PMCID: PMC11278660 DOI: 10.3390/microorganisms12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
OXA-244, an R214G variant of OXA-48, is silently spreading worldwide likely because of difficulties in detection using classical screening media. Here, we characterized two clinical isolates of Escherichia coli and Citrobacter youngae that displayed reduced susceptibility to carbapenems but were lacking significant carbapenemase activity as revealed by negative Carba NP test results. However, positive test results were seen for OXA-48-like enzymes by lateral flow immunoassays. WGS revealed the presence of a blaOXA-181-like gene that codes for OXA-484, an R214G variant of OXA-181. BlaOXA-484 gene was located on a 58.4-kb IncP1-like plasmid (pN-OXA-484), that upon transfer into E. coli HB4 with impaired permeability, conferred carbapenem and temocillin resistance (MICs > 32 mg/L). E. coli TOP10 (pTOPO-OXA-484) revealed reduced MICs in most substrates as compared to E. coli TOP10 (pTOPO-OXA-181), especially for imipenem (0.25 mg/L versus 0.75 mg/L) and temocillin (16 mg/L versus 1028 mg/L). Catalytic efficiencies of OXA-484 were reduced as compared to OXA-181 for most ß-lactams including imipenem and temocillin with 27.5- and 21.7-fold reduction, respectively. Molecular modeling confirmed that the salt bridges between R214, D159, and the R1 substituent's carboxylate group of temocillin were not possible with G214 in OXA-484, explaining the reduced affinity for temocillin. In addition, changes in active site's water network may explain the decrease in hydrolysis rate of carbapenems. OXA-484 has weak imipenem and temocillin hydrolytic activities, which may lead to silent spread due to underdetection using selective screening media or biochemical imipenem hydrolysis confirmatory tests.
Collapse
Affiliation(s)
- Camille Gonzalez
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Mariam Rima
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
| | - Réva Nermont
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
| | - Laurent Dortet
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Katie L. Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London NW9 5EQ, UK;
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France;
| | - Rémy A. Bonnin
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team “Resist” UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, Faculty of Medicine, University Paris-Saclay, INSERM, CEA, 94270 Le Kremlin-Bicêtre, France; (C.G.); (S.O.); (M.R.); (R.N.); (L.D.); (R.A.B.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
4
|
Zuo H, Sugawara Y, Kondo K, Kayama S, Kawakami S, Uechi K, Nakano A, Yahara K, Sugai M. Emergence of an IncX3 plasmid co-harbouring the carbapenemase genes blaNDM-5 and blaOXA-181. JAC Antimicrob Resist 2024; 6:dlae073. [PMID: 38741895 PMCID: PMC11089413 DOI: 10.1093/jacamr/dlae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Background The spread of transmissible plasmids with carbapenemase genes has contributed to a global increase in carbapenemase-producing Enterobacterales over the past two decades, with blaNDM and blaOXA among the most prevalent carbapenemase genes. Objectives To characterize an Escherichia coli isolate co-carrying blaNDM-5 and blaOXA-181 (JBEHAAB-19-0176) that was isolated in the Japan Antimicrobial Resistant Bacterial Surveillance in 2019-20, and to evaluate the functional advantage of carrying both genes as opposed to only one. Methods The whole-genome sequence of the isolate was determined using long- and short-read sequencing. Growth assay and co-culture experiments were performed for phenotypic characterization in the presence of different β-lactam antibiotics. Results WGS analysis showed that blaNDM-5 and blaOXA-181 were carried by the same IncX3 plasmid, pJBEHAAB-19-0176_NDM-OXA. Genetic characterization of the plasmid suggested that the plasmid emerged through the formation of a co-integrate and resolution of two typical IncX3 plasmids harbouring blaNDM-5 and blaOXA-181, which involved two recombination events at the IS3000 and IS26 sequences. When cultured in the presence of piperacillin or cefpodoxime, the growth rate of the transformant co-harbouring blaNDM-5 and blaOXA-181 was significantly higher than the transformant with only blaNDM-5. Furthermore, in co-culture where the two blaNDM-5-harbouring transformants were allowed to compete directly, the strain additionally harbouring blaOXA-181 showed a marked growth advantage. Conclusions The additional carriage of blaOXA-181 confers a selective advantage to bacteria in the presence of piperacillin and cefpodoxime. These findings may explain the current epidemiology of carbapenemase-producing Enterobacterales, in which bacteria carrying both blaNDM-5 and blaOXA-48-like genes have emerged independently worldwide.
Collapse
Affiliation(s)
- Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayoko Kawakami
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Uechi
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Ami Nakano
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Lerminiaux N, Mitchell R, Bartoszko J, Davis I, Ellis C, Fakharuddin K, Hota SS, Katz K, Kibsey P, Leis JA, Longtin Y, McGeer A, Minion J, Mulvey M, Musto S, Rajda E, Smith SW, Srigley JA, Suh KN, Thampi N, Tomlinson J, Wong T, Mataseje L. Plasmid genomic epidemiology of blaKPC carbapenemase-producing Enterobacterales in Canada, 2010-2021. Antimicrob Agents Chemother 2023; 67:e0086023. [PMID: 37971242 PMCID: PMC10720558 DOI: 10.1128/aac.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/07/2023] [Indexed: 11/19/2023] Open
Abstract
Carbapenems are considered last-resort antibiotics for the treatment of infections caused by multidrug-resistant Enterobacterales, but carbapenem resistance due to acquisition of carbapenemase genes is a growing threat that has been reported worldwide. Klebsiella pneumoniae carbapenemase (blaKPC) is the most common type of carbapenemase in Canada and elsewhere; it can hydrolyze penicillins, cephalosporins, aztreonam, and carbapenems and is frequently found on mobile plasmids in the Tn4401 transposon. This means that alongside clonal expansion, blaKPC can disseminate through plasmid- and transposon-mediated horizontal gene transfer. We applied whole genome sequencing to characterize the molecular epidemiology of 829 blaKPC carbapenemase-producing isolates collected by the Canadian Nosocomial Infection Surveillance Program from 2010 to 2021. Using a combination of short-read and long-read sequencing, we obtained 202 complete and circular blaKPC-encoding plasmids. Using MOB-suite, 10 major plasmid clusters were identified from this data set which represented 87% (175/202) of the Canadian blaKPC-encoding plasmids. We further estimated the genomic location of incomplete blaKPC-encoding contigs and predicted a plasmid cluster for 95% (603/635) of these. We identified different patterns of carbapenemase mobilization across Canada related to different plasmid clusters, including clonal transmission of IncF-type plasmids (108/829, 13%) in K. pneumoniae clonal complex 258 and novel repE(pEh60-7) plasmids (44/829, 5%) in Enterobacter hormaechei ST316, and horizontal transmission of IncL/M (142/829, 17%) and IncN-type plasmids (149/829, 18%) across multiple genera. Our findings highlight the diversity of blaKPC genomic loci and indicate that multiple, distinct plasmid clusters have contributed to blaKPC spread and persistence in Canada.
Collapse
Affiliation(s)
| | | | | | - Ian Davis
- QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Chelsey Ellis
- The Moncton Hospital, Moncton, New Brunswick, Canada
| | - Ken Fakharuddin
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Susy S. Hota
- University Health Network, Toronto, Ontario, Canada
| | - Kevin Katz
- North York General Hospital, Toronto, Ontario, Canada
| | - Pamela Kibsey
- Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | - Jerome A. Leis
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Yves Longtin
- Jewish General Hospital, Montréal, Québec, Canada
| | | | - Jessica Minion
- Saskatchewan Health Authority, Regina, Saskatchewan, Canada
| | - Michael Mulvey
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Sonja Musto
- Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Ewa Rajda
- McGill University Health Centre, Montréal, Québec, Canada
| | | | - Jocelyn A. Srigley
- BC Women’s and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | | | - Nisha Thampi
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Titus Wong
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Laura Mataseje
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - on behalf of the Canadian Nosocomial Infection Surveillance Program
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
- Public Health Agency of Canada, Ottawa, Ontario, Canada
- QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
- The Moncton Hospital, Moncton, New Brunswick, Canada
- University Health Network, Toronto, Ontario, Canada
- North York General Hospital, Toronto, Ontario, Canada
- Royal Jubilee Hospital, Victoria, British Columbia, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Jewish General Hospital, Montréal, Québec, Canada
- Sinai Health, Toronto, Ontario, Canada
- Saskatchewan Health Authority, Regina, Saskatchewan, Canada
- Health Sciences Centre, Winnipeg, Manitoba, Canada
- McGill University Health Centre, Montréal, Québec, Canada
- University of Alberta Hospital, Edmonton, Alberta, Canada
- BC Women’s and BC Children’s Hospital, Vancouver, British Columbia, Canada
- The Ottawa Hospital, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Alioto TS, Gut M, Rodiño-Janeiro BK, Cruz F, Gómez-Garrido J, Vázquez-Ucha JC, Mata C, Antoni R, Briansó F, Dabad M, Casals E, Ingham M, Álvarez-Tejado M, Bou G, Gut IG. Development of a novel streamlined workflow (AACRE) and database (inCREDBle) for genomic analysis of carbapenem-resistant Enterobacterales. Microb Genom 2023; 9. [PMID: 38010338 DOI: 10.1099/mgen.0.001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
In response to the threat of increasing antimicrobial resistance, we must increase the amount of available high-quality genomic data gathered on antibiotic-resistant bacteria. To this end, we developed an integrated pipeline for high-throughput long-read sequencing, assembly, annotation and analysis of bacterial isolates and used it to generate a large genomic data set of carbapenemase-producing Enterobacterales (CPE) isolates collected in Spain. The set of 461 isolates were sequenced with a combination of both Illumina and Oxford Nanopore Technologies (ONT) DNA sequencing technologies in order to provide genomic context for chromosomal loci and, most importantly, structural resolution of plasmids, important determinants for transmission of antimicrobial resistance. We developed an informatics pipeline called Assembly and Annotation of Carbapenem-Resistant Enterobacteriaceae (AACRE) for the full assembly and annotation of the bacterial genomes and their complement of plasmids. To explore the resulting genomic data set, we developed a new database called inCREDBle that not only stores the genomic data, but provides unique ways to filter and compare data, enabling comparative genomic analyses at the level of chromosomes, plasmids and individual genes. We identified a new sequence type, ST5000, and discovered a genomic locus unique to ST15 that may be linked to its increased spread in the population. In addition to our major objective of generating a large regional data set, we took the opportunity to compare the effects of sample quality and sequencing methods, including R9 versus R10 nanopore chemistry, on genome assembly and annotation quality. We conclude that converting short-read and hybrid microbial sequencing and assembly workflows to the latest nanopore chemistry will further reduce processing time and cost, truly enabling the routine monitoring of resistance transmission patterns at the resolution of complete chromosomes and plasmids.
Collapse
Affiliation(s)
- Tyler S Alioto
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Bruno Kotska Rodiño-Janeiro
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
| | - Fernando Cruz
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan Carlos Vázquez-Ucha
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Caterina Mata
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Regina Antoni
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Ferran Briansó
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), Barcelona, Spain
- Roche Diagnostics, Sant Cugat del Vallès, Barcelona, Spain
| | - Marc Dabad
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Eloi Casals
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Matthew Ingham
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Germán Bou
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
7
|
Lemonnier D, Machuel M, Obin O, Outurquin G, Adjidé C, Mullié C. Trends in Antibiotic-Resistant Bacteria Isolated from Screening Clinical Samples in a Tertiary Care Hospital over the 2018-2022 Period. Antibiotics (Basel) 2023; 12:1314. [PMID: 37627734 PMCID: PMC10451239 DOI: 10.3390/antibiotics12081314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
To assess the putative impact of the COVID-19 pandemic on multidrug-resistant (MDR) bacteria recovered from routine screening samples and, more globally, the trends in time to first positive screening sample and carriage duration of those bacteria in patients admitted to a tertiary hospital, data from laboratory results were retrospectively mined over the 2018-2022 period. No significant differences could be found in the number of positive patients or MDR isolates per year, time to positive screening, or carriage duration. Extended-spectrum beta-lactamase producers were dominant throughout the studied period but their relative proportion decreased over time as well as that of meticillin-resistant Staphylococcus aureus. Meanwhile, carbapenemase-producing enterobacteria (CPE) proportion increased. Among the 212 CPE isolates, Klebsiella pneumoniae and Escherichia coli were the more frequent species but, beginning in 2020, a significant rise in Enterobacter cloacae complex and Citrobacter freundii occurred. OXA48 was identified as the leading carbapenemase and, in 2020, a peak in VIM-producing enterobacteria linked to an outbreak of E. cloacae complex during the COVID-19 pandemic was singled out. Finally, a worrisome rise in isolates producing multiple carbapenemases (NDM/VIM and mostly NDM/OXA48) was highlighted, especially in 2022, which could lead to therapeutic dead-ends if their dissemination is not controlled.
Collapse
Affiliation(s)
- Delphine Lemonnier
- Unité de Prévention du Risque Infectieux, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France;
| | - Marine Machuel
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
| | - Odile Obin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
| | - Gaëtan Outurquin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
| | - Crespin Adjidé
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
| | - Catherine Mullié
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80054 Amiens, France (C.A.)
- Laboratoire AGIR UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens, France
| |
Collapse
|
8
|
Mao Y, Xu K, Miglietta L, Kreitmann L, Moser N, Georgiou P, Holmes A, Rodriguez-Manzano J. Deep Domain Adaptation Enhances Amplification Curve Analysis for Single-Channel Multiplexing in Real-Time PCR. IEEE J Biomed Health Inform 2023; 27:3093-3103. [PMID: 37028376 DOI: 10.1109/jbhi.2023.3257727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Data-driven approaches for molecular diagnostics are emerging as an alternative to perform an accurate and inexpensive multi-pathogen detection. A novel technique called Amplification Curve Analysis (ACA) has been recently developed by coupling machine learning and real-time Polymerase Chain Reaction (qPCR) to enable the simultaneous detection of multiple targets in a single reaction well. However, target classification purely relying on the amplification curve shapes faces several challenges, such as distribution discrepancies between different data sources (i.e., training vs testing). Optimisation of computational models is required to achieve higher performance of ACA classification in multiplex qPCR through the reduction of those discrepancies. Here, we proposed a novel transformer-based conditional domain adversarial network (T-CDAN) to eliminate data distribution differences between the source domain (synthetic DNA data) and the target domain (clinical isolate data). The labelled training data from the source domain and unlabelled testing data from the target domain are fed into the T-CDAN, which learns both domains' information simultaneously. After mapping the inputs into a domain-irrelevant space, T-CDAN removes the feature distribution differences and provides a clearer decision boundary for the classifier, resulting in a more accurate pathogen identification. Evaluation of 198 clinical isolates containing three types of carbapenem-resistant genes (blaNDM, blaIMP and blaOXA-48) illustrates a curve-level accuracy of 93.1% and a sample-level accuracy of 97.0% using T-CDAN, showing an accuracy improvement of 20.9% and 4.9% respectively. This research emphasises the importance of deep domain adaptation to enable high-level multiplexing in a single qPCR reaction, providing a solid approach to extend qPCR instruments' capabilities in real-world clinical applications.
Collapse
|
9
|
Guo CH, Liu YQ, Li Y, Duan XX, Yang TY, Li FY, Zou M, Liu BT. High prevalence and genomic characteristics of carbapenem-resistant Enterobacteriaceae and colistin-resistant Enterobacteriaceae from large-scale rivers in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121869. [PMID: 37225077 DOI: 10.1016/j.envpol.2023.121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The widespread presence of carbapenem-resistant Enterobacteriaceae (CRE) and mcr-positive Escherichia coli (MCREC) poses a huge threat to both animal and human health. River water environments are vital reservoirs of antibiotic resistance genes, however, the prevalence and characteristics of CRE and MCREC from large-scale rivers in China have not been reported. In the current study, we sampled 86 rivers from four cities in Shandong Province, China in 2021 and analyzed the prevalence of CRE and MCREC. The blaNDM/blaKPC-2/mcr-positive isolates were characterized with methods including PCR, antimicrobial susceptibility testing, conjugation, replicon typing, whole-genome sequencing and phylogenetic analysis. We found that the prevalence of CRE and MCREC in 86 rivers was 16.3% (14/86) and 27.9% (24/86), respectively and eight rivers carried both mcr-1 and blaNDM/blaKPC-2. A total of 48 Enterobacteriaceae isolates (10 ST11 Klebsiella pneumoniae with blaKPC-2, 12 blaNDM-positive E. coli and 26 MCREC carrying only mcr-1) were obtained in this study and 47 displayed multidrug resistance (MDR). Notably, 10 of the 12 blaNDM-positive E. coli isolates also harbored the mcr-1 gene. The blaKPC-2 gene was located within mobile element ISKpn27-blaKPC-2-ISKpn6 on novel F33:A-:B- non-conjugative MDR plasmids in ST11 K. pneumoniae. The dissemination of blaNDM was mediated by transferable MDR IncB/O plasmids or IncX3 plasmids while mcr-1 was primarily disseminated by highly similar IncI2 plasmids. Notably, these waterborne IncB/O, IncX3 and IncI2 plasmids were all highly similar to previously identified plasmids from animal and human isolates. A phylogenomic analysis revealed that the CRE and MCREC isolates from water environments might be derived from animals and trigger infections in humans. The high prevalence of CRE and MCREC in large-scale environmental rivers is alarming and needs sustained surveillance due to the potential risk for transmission to humans via the food chain (irrigation) or direct contact.
Collapse
Affiliation(s)
- Cai-Hong Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Qing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, Jinan, 250100, China
| | - Yan Li
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, 266000, China
| | - Xiao-Xiao Duan
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, 266000, China
| | - Ting-Yu Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fang-Yu Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
11
|
Downing T, Lee MJ, Archbold C, McDonnell A, Rahm A. Informing plasmid compatibility with bacterial hosts using protein-protein interaction data. Genomics 2022; 114:110509. [PMID: 36273742 DOI: 10.1016/j.ygeno.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
The compatibility of plasmids with new host cells is significant given their role in spreading antimicrobial resistance (AMR) and virulence factor genes. Evaluating this using in vitro screening is laborious and can be informed by computational analyses of plasmid-host compatibility through rates of protein-protein interactions (PPIs) between plasmid and host cell proteins. We identified large excesses of such PPIs in eight important plasmids, including pOXA-48, using most known bacteria (n = 4363). 23 species had high rates of interactions with four blaOXA-48-positive plasmids. We also identified 48 species with high interaction rates with plasmids common in Escherichia coli. We found a strong association between one plasmid and the fimbrial adhesin operon pil, which could enhance host cell adhesion in aqueous environments. An excess rate of PPIs could be a sign of host-plasmid compatibility, which is important for AMR control given that plasmids like pOXA-48 move between species with ease.
Collapse
Affiliation(s)
- Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland; The Pirbright Institute, UK.
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Conor Archbold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Adam McDonnell
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexander Rahm
- GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
12
|
Giufrè M, Errico G, Monaco M, Del Grosso M, Sabbatucci M, Pantosti A, Cerquetti M, Pagnotta M, Marra M, Carollo M, Rossini A, Fogato E, Cesana E, Gentiloni Silverj F, Zabzuni D, Tinelli M. Whole Genome Sequencing and Molecular Analysis of Carbapenemase-Producing Escherichia coli from Intestinal Carriage in Elderly Inpatients. Microorganisms 2022; 10:microorganisms10081561. [PMID: 36013979 PMCID: PMC9413394 DOI: 10.3390/microorganisms10081561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
The spread of carbapenemase-producing (CP) Enterobacterales is currently a worldwide concern, especially in the elderly. Twelve CP-E. coli isolated from rectal swabs of colonized inpatients aged ≥65 years from four hospitals in two Italian cities (Milan and Rome) were analyzed by whole genome sequencing (WGS) to obtain multi-locus sequence typing (MLST), identification of carbapenemase-encoding genes, resistome, plasmid content, and virulence genes. MLST analysis showed the presence of 10 unrelated lineages: ST410 (three isolates from three different hospitals in two cities) and ST12, ST38, ST69, ST95, ST131, ST189, ST648, ST1288, and ST1598 (one isolate each). Most isolates (9/12, 75%) contained a serine-β-lactamase gene (5 blaKPC-3, 2 blaKPC-2, and 2 blaOXA-181), while three isolates harbored a metallo-β-lactamase gene (two blaNDM-5 and one blaVIM-1). In most CP-E. coli, the presence of more than one plasmid was observed, with the predominance of IncF. Several virulence genes were detected. All isolates contained genes enhancing the bacterial fitness, such as gad and terC, and all isolates but one, fimH, encoding type 1 fimbriae. In conclusion, CP-E. coli clones colonizing elderly patients showed heterogeneous genetic backgrounds. We recommend strict surveillance to monitor and prevent the spread of successful, high-risk clones in healthcare settings.
Collapse
Affiliation(s)
- Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
- Correspondence:
| | - Giulia Errico
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Maria Del Grosso
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Michela Sabbatucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Marina Cerquetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Michela Pagnotta
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Manuela Marra
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (M.C.)
| | - Maria Carollo
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (M.C.)
| | | | - Elena Fogato
- Golgi-Redaelli Geriatric Institute, 20146 Milan, Italy;
| | - Elisabetta Cesana
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
| | | | - Dorjan Zabzuni
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
| | - Marco Tinelli
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
- Italian Society of Infectious and Tropical Diseases (SIMIT), 59100 Prato, Italy
| |
Collapse
|
13
|
Turton JF, Pike R, Perry C, Jenkins C, Turton JA, Meunier D, Hopkins KL. Wide distribution of Escherichia coli carrying IncF plasmids containing bla NDM-5 and rmtB resistance genes from hospitalized patients in England. J Med Microbiol 2022; 71. [PMID: 35925786 DOI: 10.1099/jmm.0.001569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The New Delhi metallo-β-lactamase (NDM) variant NDM-5 was first described in 2011 in an isolate of Escherichia coli. We noted that a high proportion of isolates of E. coli positive for bla NDM carbapenemase genes submitted to the UK Health Security Agency (formerly Public Health England) between 2019 and mid-2021 carried the bla NDM-5 allele, with many co-harbouring rmtB, rendering them highly resistant to aminoglycosides as well as to most β-lactams.Hypothesis/Gap Statement. This observation suggested that a common plasmid may be circulating.Aim. To compare these isolates and describe the plasmids carrying these resistance elements.Methodology. All isolates were sequenced on an Illumina platform, with five also subjected to long-read nanopore sequencing to provide complete assemblies. The locations of bla NDM-5, rmtB and other associated genetic elements were identified. Susceptibility testing to a wide range of antibiotics was carried out on representative isolates.Results. The 34 isolates co-harbouring bla NDM-5 and rmtB were from 14 hospital groups and six different regions across England and consisted of 11 distinct sequence types. All carried IncF plasmids. Assembly of the NDM plasmids in five isolates revealed that they carried rmtB and bla NDM-5 in an IncF conjugative plasmid ranging in size from 85.5 to 161 kb. All carried a highly conserved region, previously described in E. coli plasmid pHC105-NDM, that included bla TEM-1B and rmtB followed by sequence bounded by two IS26 elements containing ΔISAba125, bla NDM-5, ble, trpF and tat followed by ISCR1 and an integron with sul1, aadA2 and dfrA12 cassettes. This arrangement has been described in isolates from other countries and continents, suggesting that such plasmids are widely distributed, at least in E. coli, with similar plasmids also found in Klebsiella pneumoniae. Tested isolates were resistant to most antibiotics except colistin, fosfomycin and tigecycline.Conclusion. These observations suggest that conjugative plasmids carrying a highly conserved resistance gene segment have become widespread in England and elsewhere. This study highlights the value of routine whole-genome sequencing in identifying genetic elements responsible for resistance dissemination.
Collapse
Affiliation(s)
- Jane F Turton
- Healthcare Associated Infections, Fungal, Antimicrobial Resistance, Antimicrobial Usage and Sepsis Division, UK Health Security Agency, London, UK
| | - Rachel Pike
- Reference Services Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5HT, UK
| | - Claire Perry
- Reference Services Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5HT, UK
| | - Claire Jenkins
- Reference Services Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5HT, UK
| | | | - Danièle Meunier
- Healthcare Associated Infections, Fungal, Antimicrobial Resistance, Antimicrobial Usage and Sepsis Division, UK Health Security Agency, London, UK
| | - Katie L Hopkins
- Healthcare Associated Infections, Fungal, Antimicrobial Resistance, Antimicrobial Usage and Sepsis Division, UK Health Security Agency, London, UK
| |
Collapse
|