1
|
Naga NG, El-Badan DE, Mabrouk MEM, Rateb HS, Ghanem KM, Shaaban MI. Innovative application of ceftriaxone as a quorum sensing inhibitor in Pseudomonas aeruginosa. Sci Rep 2025; 15:5022. [PMID: 39934154 PMCID: PMC11814147 DOI: 10.1038/s41598-025-87609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that has the potential to induce various healthcare-related infections through its array of virulence factors. The control of virulence factor expression is mainly regulated by a communication process among cells called quorum sensing (QS). Blocking QS could be a viable tactic to suppress virulence factors and reduce pathogenicity without impacting bacterial growth. This approach has the potential to significantly decrease the multiple drug resistance emergence. In this study, we explored the impact of ceftriaxone (CRO), which is a commonly used β-lactam antibiotic, and its metal derivatives on the QS system and virulence factors of both standard strains and clinical isolates of P. aeruginosa. The quorum sensing inhibitory (QSI) activity of CRO and ceftriaxone Nickel complex (CRON) was evaluated. The minimum inhibitory concentration (MIC) was determined and the effect of sub-MICs of CRO and CRON was assessed on P. aeruginosa strains virulence factors. CRO and CRON effectively suppressed the virulence factors of P. aeruginosa strains at sub-MICs, without altering bacterial viability. Additionally, a molecular docking investigation was carried out to identify potential mechanisms of QSI. CRO and CRON exhibited high ICM scores, potentially displacing natural ligands when interacting with LasR, LasI, and PqsR receptors.
Collapse
Affiliation(s)
- Nourhan G Naga
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Dalia E El-Badan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mona E M Mabrouk
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Heba S Rateb
- Department of Pharmaceutical and Medicinal Chemistry, Pharmacy College, Misr University for Science and Technology, Cairo, Egypt
| | - Khaled M Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Nortje NQ, Aribisala JO, Pillay C, Sabiu S. Molecular modelling and experimental validation of mangiferin and its related compounds as quorum sensing modulators of Pseudomonas aeruginosa. Arch Microbiol 2025; 207:53. [PMID: 39921728 PMCID: PMC11807064 DOI: 10.1007/s00203-025-04240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/10/2025]
Abstract
The LasR quorum sensing system regulates the virulence factors of Pseudomonas aeruginosa, a multi-drug resistant pathogen. Mangiferin and related compounds have been found to modulate this system as determined by in silico and in vitro experimental procedures. ZINCPharmer was used to compile a library of over 1000 metabolites that were screened to the top five based on shared pharmacophores and drug-like properties with mangiferin. Molecular docking and molecular dynamics simulation (140 ns) showed that ZINC E (- 55.64 ± 2.93 kcal/mol) and ZINC D (- 54.51 ± 2.82 kcal/mol) had significantly lower binding free energy compared to mangiferin-LasR (- 42.24 ± 3.94 kcal/mol) and the reference standard (azithromycin-LasR (- 40.01 ± 6.15 kcal/mol). ZINC D (95.16%) competed favorably with mangiferin (95.77%) as potential QS modulators at sub-minimum inhibitory concentrations relative to ZINC E (85.07%) and azithromycin (85.79%). These observations suggest mangiferin and related lead compounds as potential drug candidates for P. aeruginosa infection management.
Collapse
Affiliation(s)
- Nicolas Quinn Nortje
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Jamiu Olaseni Aribisala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
3
|
Nouh HS, El-Zawawy NA, Halawa M, Shalamesh EM, Ali SS, Korbecka-Glinka G, Shala AY, El-Sapagh S. Endophytic Penicillium oxalicum AUMC 14898 from Opuntia ficus-indica: A Novel Source of Tannic Acid Inhibiting Virulence and Quorum Sensing of Extensively Drug-Resistant Pseudomonas aeruginosa. Int J Mol Sci 2024; 25:11115. [PMID: 39456896 PMCID: PMC11507641 DOI: 10.3390/ijms252011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pseudomonas aeruginosa is a harmful pathogen that causes a variety of acute and chronic infections through quorum sensing (QS) mechanisms. The increasing resistance of this bacterium to numerous antibiotics has created a demand for new medications that specifically target QS. Endophytes can be the source of compounds with antibacterial properties. This research is the first to examine tannic acid (TA) produced by endophytic fungus as a potential biotherapeutic agent. A novel endophytic fungal isolate identified as Penicillium oxalicum was derived from the cladodes of Opuntia ficus-indica (L.). The species identification for this isolate was confirmed through sequencing of the internal transcribed spacer region. The metabolites from the culture of this isolate were extracted using ethyl acetate, then separated and characterized using chromatographic methods. This led to the acquisition of TA, a compound that shows strong anti-QS and excellent antibacterial effects against extensively drug-resistant P. aeruginosa strains. Furthermore, it was shown that treating P. aeruginosa with the obtained TA reduced the secretion of virulence factors controlled by QS in a dose-dependent manner, indicating that TA inhibited the QS characteristics of P. aeruginosa. Simultaneously, TA significantly inhibited the expression of genes associated with QS, including rhlR/I, lasR/I, and pqsR. In addition, in silico virtual molecular docking showed that TA could efficiently bind to QS receptor proteins. Our results showed that P. oxalicum could be a new source of TA for the treatment of infections caused by extensively drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Hoda S. Nouh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Nessma A. El-Zawawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Mohamed Halawa
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Ebrahim M. Shalamesh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Sameh Samir Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Grażyna Korbecka-Glinka
- Department of Biotechnology and Plant Breeding, Institute of Soil Science and Plant Cultivation—State Research Institute, 24-100 Puławy, Poland
| | - Awad Y. Shala
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Shimaa El-Sapagh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| |
Collapse
|
4
|
Mahavy CE, Razanatseheno AJ, Mol A, Ngezahayo J, Duez P, El Jaziri M, Baucher M, Rasamiravaka T. Edible Medicinal Guava Fruit ( Psidium guajava L.) Are a Source of Anti-Biofilm Compounds against Pseudomonas aeruginosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1122. [PMID: 38674531 PMCID: PMC11054768 DOI: 10.3390/plants13081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Psidium guajava is one of the most common edible medicinal plants frequently used in Malagasy traditional medicine to treat gastrointestinal infections. In order to evaluate their probable antibacterial activities, three organic extracts (successive extractions by hexane, dichloromethane, and ethanol) of ripe guava fruits were assessed for their bactericidal and anti-virulence properties against P. aeruginosa PAO1. Although these three extracts have shown no direct antibacterial activity (MIC of 1000 µg/mL) and, at the non-bactericidal concentration of 100 µg/mL, no impact on the production of major P. aeruginosa PAO1 virulence factors (pyocyanin and rhamnolipids), the hexane and dichloromethane extracts showed significant anti-biofilm properties and the dichloromethane extract disrupted the P. aeruginosa PAO1 swarming motility. Bioguided fractionation of the dichloromethane extract led to the isolation and identification of lycopene and β-sitosterol-β-D-glucoside as major anti-biofilm compounds. Interestingly, both compounds disrupt P. aeruginosa PAO1 biofilm formation and maintenance with IC50 of 1383 µM and 131 µM, respectively. More interestingly, both compounds displayed a synergistic effect with tobramycin with a two-fold increase in its effectiveness in killing biofilm-encapsulated P. aeruginosa PAO1. The present study validates the traditional uses of this edible medicinal plant, indicating the therapeutic effectiveness of guava fruits plausibly through the presence of these tri- and tetraterpenoids, which deserve to be tested against pathogens generally implicated in diarrhea.
Collapse
Affiliation(s)
- Christian Emmanuel Mahavy
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906, Antananarivo 101, Madagascar
| | | | - Adeline Mol
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Jeremie Ngezahayo
- Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE), Université du Burundi, Bujumbura BP 2700, Burundi
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, B-7000 Mons, Belgium
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Marie Baucher
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Tsiry Rasamiravaka
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906, Antananarivo 101, Madagascar
| |
Collapse
|
5
|
Masuku M, Mozirandi W, Mukanganyama S. Evaluation of the Antibacterial and Antibiofilm Effects of Ethyl Acetate Root Extracts from Vernonia adoensis (Asteraceae) against Pseudomonas aeruginosa. ScientificWorldJournal 2023; 2023:5782656. [PMID: 37324654 PMCID: PMC10264714 DOI: 10.1155/2023/5782656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
There is an increase in mortality and morbidity in the health facilities due to nosocomial infections caused by multidrug-resistant nosocomial bacteria; hence, there is a need for new antibacterial agents. Vernonia adoensis has been found to possess medicinal value. Plant phytochemicals may have antimicrobial activity against some resistant pathogens. The antibacterial efficacy of root extracts against Staphylococcus aureus and Pseudomonas aeruginosa was investigated using the microbroth dilution method. All extracts from the roots had an inhibitory effect on the growth of both bacteria, with the most susceptible being P. aeruginosa. The most potent extract was the ethyl acetate extract which caused a percentage inhibition of 86% against P. aeruginosa. The toxicity of the extract was determined on sheep erythrocytes, and its effect on membrane integrity was determined by quantifying the amount of protein and nucleic acid leakage from the bacteria. The lowest concentration of extract used, which was 100 µg/ml, did not cause haemolysis of the erythrocytes, while at 1 mg/ml of the extract, 21% haemolysis was observed. The ethyl acetate extract caused membrane impairment of P. aeruginosa, leading to protein leakage. The effect of the extract on the biofilms of P. aeruginosa was determined in 96-microwell plates using crystal violet. In the concentration range of 0-100 µg/ml, the extract inhibited the formation of biofilms and decreased the attachment efficiency. The phytochemical constituents of the extract were determined using gas chromatography-mass spectrometry. Results of analysis showed the presence of 3-methylene-15-methoxy pentadecanol, 2-acetyl-6-(t-butyl)-4-methylphenol, 2-(2,2,3,3-tetrafluoropropanoyl) cyclohexane-1,4-dione, E,E,Z-1,3,12-nonadecatriene-5,14-diol, and stigmasta-5,22-dien-3-ol. Fractionation and purification will elucidate the potential antimicrobial compounds which are present in the roots of V. adoensis.
Collapse
Affiliation(s)
- Mercy Masuku
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Winnie Mozirandi
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| |
Collapse
|
6
|
Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel) 2023; 12:antibiotics12030499. [PMID: 36978366 PMCID: PMC10044227 DOI: 10.3390/antibiotics12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat infections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spiramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aeruginosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensitized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In contrast, when the spiramycin was injected together with the bacterium, the mortality dropped to about 50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin, gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.
Collapse
|
7
|
Hamza EH, El-Shawadfy AM, Allam AA, Hassanein WA. Study on pyoverdine and biofilm production with detection of LasR gene in MDR Pseudomonas aeruginosa. Saudi J Biol Sci 2022; 30:103492. [DOI: 10.1016/j.sjbs.2022.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
8
|
Sun F, Sun Y, Wang Y, Yuan Q, Xiong L, Feng W, Xia P. Role of Penicillin-Binding Protein 1b in the Biofilm Inhibitory Efficacy of Ceftazidime Against Escherichia coli. Curr Microbiol 2022; 79:271. [PMID: 35881255 DOI: 10.1007/s00284-022-02966-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Penicillin-binding proteins (PBPs) play an important role in bacterial biofilm formation and are the targets of β-lactam antibiotics. This study aimed to investigate the effect of the β-lactam antibiotic ceftazidime (CAZ) at subminimal inhibitory concentration (sub-MIC) on the biofilm formation of Escherichia coli by targeting PBPs. In this study, PBP1a (encoded by mrcA), PBP1b (encoded by mrcB) and PBP3 (encoded by ftsI), which have high affinity for CAZ, were deleted from the E. coli strain. The mrcB mutant showed lower adhesion, biofilm formation and swimming motility, whereas the knockout of mrcA or ftsI had no obvious influence on the biofilm-associated indicators mentioned above. After treatment with sub-MIC of CAZ, the adhesion, biofilm formation and swimming motility of the mrcB-mutant strain were not different or were slightly reduced compared with those of the untreated group. However, sub-MIC of CAZ still significantly inhibited these biofilm-associated indicators in mrcA- and ftsI-mutant strains. In addition, consistent with the bacterial motility results, the deletion of the mrcB gene reduced the flagellar numbers and the expression of flagellar structural genes, but flagellum-related indicators in the mrcB-mutant strain treated with CAZ were similar to those in the untreated group. Bioinformatic analysis showed that CAZ binds to Lys287, Lys274, Glu281, and Arg286 in PBP1b. Taken together, these results suggest that CAZ reduced flagellar synthesis and bacterial motility by binding with PBP1b and thereby inhibited the adhesion and biofilm formation of E. coli.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yixuan Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Department of Pharmacy, Chongqing Municipal People's Hospital, Chongqing, 400014, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qian Yuan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lirong Xiong
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
9
|
Xie Y, Chen J, Wang B, Peng AY, Mao ZW, Xia W. Inhibition of Quorum-Sensing Regulator from Pseudomonas aeruginosa Using a Flavone Derivative. Molecules 2022; 27:molecules27082439. [PMID: 35458637 PMCID: PMC9031925 DOI: 10.3390/molecules27082439] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication process that controls bacterial collective behaviors. The QS network regulates and coordinates bacterial virulence factor expression, antibiotic resistance and biofilm formation. Therefore, inhibition of the QS system is an effective strategy to suppress the bacterial virulence. Herein, we identify a phosphate ester derivative of chrysin as a potent QS inhibitor of the human pathogen Pseudomonas aeruginosa (P. aeruginosa) using a designed luciferase reporter assay. In vitro biochemical analysis shows that the chrysin derivative binds to the bacterial QS regulator LasR and abrogates its DNA-binding capability. In particular, the derivative exhibits higher anti-virulence activity compared to the parent molecule. All the results reveal the potential application of flavone derivative as an anti-virulence compound to combat the infectious diseases caused by P. aeruginosa.
Collapse
Affiliation(s)
- Yanxuan Xie
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (Y.X.); (J.C.); (B.W.); (A.-Y.P.)
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingxin Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (Y.X.); (J.C.); (B.W.); (A.-Y.P.)
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bo Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (Y.X.); (J.C.); (B.W.); (A.-Y.P.)
| | - Ai-Yun Peng
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (Y.X.); (J.C.); (B.W.); (A.-Y.P.)
| | - Zong-Wan Mao
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (Y.X.); (J.C.); (B.W.); (A.-Y.P.)
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (Z.-W.M.); (W.X.)
| | - Wei Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (Y.X.); (J.C.); (B.W.); (A.-Y.P.)
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (Z.-W.M.); (W.X.)
| |
Collapse
|
10
|
Sagar PK, Sharma P, Singh R. Inhibition of Quorum Sensing Regulated Virulence Factors and Biofilm Formation by Eucalyptus globulus against Multidrug-Resistant Pseudomonas aeruginosa. J Pharmacopuncture 2022; 25:37-45. [PMID: 35371582 PMCID: PMC8947967 DOI: 10.3831/kpi.2022.25.1.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/28/2020] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives The quorum-sensing–inhibitory and anti-biofilm activities of the methanol extract of E. globulus leaves were determined against clinically isolated multidrug-resistant Pseudomonas aeruginosa. Methods The preliminary anti-quorum–sensing (AQS) activity of eucalyptus was investigated against a biosensor strain Chromobacterium violaceum ATCC 12472 (CV12472) by using the agar well diffusion method. The effect of sub-minimum inhibitory concentrations (sub-MICs) of the methanol extract of eucalyptus on different quorum-sensing–regulated virulence factors, such as swarming motility, pyocyanin pigment, exopolysaccharide (EPS), and biofilm formation, against clinical isolates (CIs 2, 3, and 4) and reference PA01 of Pseudomonas aeruginosa were determined using the swarm diameter (mm)-measurement method, chloroform extraction method, phenol (5%)-sulphuric acid (concentrated) method, and the microtiter plate assay respectively, and the inhibition (%) in formation were calculated. Results The preliminary AQS activity (violacein pigment inhibition) of eucalyptus was confirmed against Chromobacterium violaceum ATCC 12472 (CV12472). The eucalyptus extract also showed concentration-dependent inhibition (%) of swarming motility, pyocyanin pigment, EPS, and biofilm formation in different CIs and PA01 of P. aeruginosa. Conclusion Our results revealed the effectiveness of the E. globulus extract for the regulation of quorum-sensing–dependent virulence factors and biofilm formation at a reduced dose (sub-MICs) and suggest that E. globulus may be a therapeutic agent for curing and controlling bacterial infection and thereby reducing the possibility of resistance development in pathogenic strains.
Collapse
Affiliation(s)
- Pankaj Kumar Sagar
- Department of Biotechnology, Bundelkhand University, Jhansi (U.P.), India
| | - Poonam Sharma
- Department of Zoology, Indira Gandhi National Tribal University (A Central University), Amarkantak, Madhya Pradesh, India
| | - Rambir Singh
- Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University (A Central University), Aizawl, Mizoram, India
| |
Collapse
|
11
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
12
|
Pouget C, Dunyach-Remy C, Pantel A, Boutet-Dubois A, Schuldiner S, Sotto A, Lavigne JP, Loubet P. Alternative Approaches for the Management of Diabetic Foot Ulcers. Front Microbiol 2021; 12:747618. [PMID: 34675910 PMCID: PMC8524042 DOI: 10.3389/fmicb.2021.747618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulcers (DFU) represent a growing public health problem. The emergence of multidrug-resistant (MDR) bacteria is a complication due to the difficulties in distinguishing between infection and colonization in DFU. Another problem lies in biofilm formation on the skin surface of DFU. Biofilm is an important pathophysiology step in DFU and may contribute to healing delays. Both MDR bacteria and biofilm producing microorganism create hostile conditions to antibiotic action that lead to chronicity of the wound, followed by infection and, in the worst scenario, lower limb amputation. In this context, alternative approaches to antibiotics for the management of DFU would be very welcome. In this review, we discuss current knowledge on biofilm in DFU and we focus on some new alternative solutions for the management of these wounds, such as antibiofilm approaches that could prevent the establishment of microbial biofilms and wound chronicity. These innovative therapeutic strategies could replace or complement the classical strategy for the management of DFU to improve the healing process.
Collapse
Affiliation(s)
- Cassandra Pouget
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Nîmes, France
| | - Catherine Dunyach-Remy
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Alix Pantel
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Adeline Boutet-Dubois
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Sophie Schuldiner
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service des Maladies Métaboliques et Endocriniennes, Clinique du Pied Gard Occitanie, CHU Nîmes, Le Grau-du-Roi, France
| | - Albert Sotto
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| | - Paul Loubet
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, Clinique du Pied Gard Occitanie, CHU Nîmes, Nîmes, France
| |
Collapse
|
13
|
Naga NG, El-Badan DE, Rateb HS, Ghanem KM, Shaaban MI. Quorum Sensing Inhibiting Activity of Cefoperazone and Its Metallic Derivatives on Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:716789. [PMID: 34660340 PMCID: PMC8515130 DOI: 10.3389/fcimb.2021.716789] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
The last decade has witnessed a massive increase in the rate of mortalities caused by multidrug-resistant Pseudomonas aeruginosa. Therefore, developing new strategies to control virulence factors and pathogenicity has received much attention. One of these strategies is quorum sensing inhibition (QSI) which was developed to control Pseudomonas infection. This study aims to validate the effect of one of the most used β-lactam antibiotics; cefoperazone (CFP) and its metallic-derivatives on quorum sensing (QS) and virulence factors of P. aeruginosa. Assessment of quorum sensing inhibitory activity of CFP, cefoperazone Iron complex (CFPF) and cefoperazone Cobalt complex (CFPC) was performed by using reporter strain Chromobacterium violaceum ATCC 12472. Minimal inhibitory concentration (MIC) was carried out by the microbroth dilution method. The influence of sub-MICs (1/4 and 1/2 MICs) of CFP, CFPF and CFPC on virulence factors of P. aeruginosa was evaluated. Data was confirmed on the molecular level by RT-PCR. Also, molecular docking analysis was conducted to figure out the possible mechanisms of QSI. CFP, CFPF, and CFPC inhibited violacein pigment production of C. violaceum ATCC 12472. Sub-MICs of CFP (128- 256 μg/mL), and significantly low concentrations of CFPC (0.5- 16 μg/mL) and CFPF (0.5- 64 μg/mL) reduced the production of QS related virulence factors such as pyocyanin, protease, hemolysin and eliminated biofilm assembly by P. aeruginosa standard strains PAO1 and PA14, and P. aeruginosa clinical isolates Ps1, Ps2, and Ps3, without affecting bacterial viability. In addition, CFP, CFPF, and CFPC significantly reduced the expression of lasI and rhlI genes. The molecular docking analysis elucidated that the QS inhibitory effect was possibly caused by the interaction with QS receptors. Both CFPF and CFPC interacted strongly with LasI, LasR and PqsR receptors with a much high ICM scores compared to CFP that could be the cause of elimination of natural ligand binding. Therefore, CFPC and CFPF are potent inhibitors of quorum sensing signaling and virulence factors of P. aeruginosa.
Collapse
Affiliation(s)
- Nourhan G Naga
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Dalia E El-Badan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba S Rateb
- Department of Pharmaceutical and Medicinal Chemistry, Pharmacy College, Misr University for Science and Technology, Cairo, Egypt
| | - Khaled M Ghanem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Yousefpour Z, Davarzani F, Owlia P. Evaluating of the Effects of Sub-MIC Concentrations of Gentamicin on Biofilm Formation in Clinical Isolates of Pseudomonas aeruginosa. IRANIAN JOURNAL OF PATHOLOGY 2021; 16:403-410. [PMID: 34567189 PMCID: PMC8463752 DOI: 10.30699/ijp.20201.524220.2584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022]
Abstract
Background & Objective: The ability of Pseudomonas aeruginosa to form biofilm has an important role in establishment of chronic phase of infections. Biofilm formation can be affected by antibiotics sub-MIC concentrations. The principal aim of the present study was to evaluate the effect of gentamicin at sub-MIC concentrations on biofilm formation in 100 Pseudomonas aeruginosa clinical isolates. Methods: Determination of minimal inhibitory concentration of gentamicin for clinical isolates was done using micro broth dilution method. The amount of biofilm formation in the treated and untreated isolates with gentamicin sub-MIC (1/2&1/4MIC) concentrations was evaluated using microtitre plate assay. pelA and pslA genes were detected in clinical isolates by PCR method. Results: 99% of clinical isolates were biofilm producer. Different changes in amount of biofilm formation were observed in the treated clinical isolates with sub-MIC concentrations of gentamicin. Two dominant changes were observed in 80% of clinical isolates. These concentrations had inhibitory effect on biofilm formation in 46.4% of isolates and caused a significant decrease in its amount. While in 31.3% of the isolates, the biofilm formation was significantly increased. The frequency of pelA and pslA genes among clinical isolates was 100%. Conclusion: gentamicin sub-MIC concentrations cause different changes on biofilm formation of Pseudomonas aeruginosa clinical isolates. Therefore, further studies are needed for discovering new treatment strategies and using sub-MIC concentrations of the antibiotic in prevention and treatment of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Zahra Yousefpour
- Department of Microbiology, Faculty of Medicine. Shahed University, Tehran, Iran
| | - Fateme Davarzani
- Department of Microbiology, Faculty of Medicine. Shahed University, Tehran, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center (MMRC), Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
15
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Hemmati F, Ghotaslou R, Salehi R, Kafil HS, Hasani A, Gholizadeh P, Nouri R, Rezaee MA. Effects of Gentamicin-Loaded Chitosan-ZnO Nanocomposite on Quorum-Sensing Regulation of Pseudomonas Aeruginosa. Mol Biotechnol 2021; 63:746-756. [PMID: 34003434 DOI: 10.1007/s12033-021-00336-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Cell density-based intercellular signaling mechanism is known as Quorum sensing (QS); it serves a significant role in regulating the pathogenic factors. The objective of the present study was to assess the influence of chitosan-zinc oxide nanocomposite (CH-ZnO nanocomposite), alone and in combination with gentamicin, on the sensitivity to hydrogen peroxide (H2O2), the production of pathogenic factors and QS-regulated genes of Pseudomonas aeruginosa. The efficacy of the minimum inhibitory concentration (MIC) and 1/4 MIC of the CH-ZnO nanocomposite, alone and in combination with gentamicin, on the sensitivity to H2O2, pyocyanin secretion, swarming and twitching motilities was evaluated. In addition, the expression of some QS-regulated genes including rhlI, rhlR, lasI and lasR genes was measured by Real-time quantitative PCR (RT-qPCR) following exposure to the nanocomposite. The results demonstrated that at MIC concentrations, the gentamicin-loaded CH-ZnO nanocomposite significantly inhibited QS-regulated phenotypes such as pyocyanin secretion (82.4%), swarming (76%) and twitching (73.6%) motilities; further it increased the inhibition growth zone (134.5%), as well as, at 1/4 MIC concentration decreased the expression of lasI (72%), lasR (78%), rhlI (76%) and rhlR (82%) genes; as compared to untreated P. aeruginosa PAO1 (P < 0.05). Our results also demonstrated that the CH-ZnO nanocomposite combined with gentamicin could be a potential innovative candidate, which could be broadly applied in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Use of Quorum Sensing Inhibition Strategies to Control Microfouling. Mar Drugs 2021; 19:md19020074. [PMID: 33573187 PMCID: PMC7912365 DOI: 10.3390/md19020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.
Collapse
|
18
|
Feng W, Zhang L, Yuan Q, Wang Y, Yao P, Xia P, Sun F. Effect of sub-minimal inhibitory concentration ceftazidime on the pathogenicity of uropathogenic Escherichia coli. Microb Pathog 2021; 151:104748. [PMID: 33484810 DOI: 10.1016/j.micpath.2021.104748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is the most prevalent causative agent of urinary tract infections (UTIs). The pathogenicity of UPEC relies on the expression of virulence factors which could be regulated by intercellular signal molecules. Our previous study found that sub-minimal inhibitory concentration ceftazidime (sub-MIC CAZ) could inhibit the biofilm formation of E. coli by luxS/AI-2 or indole. Therefore, we speculated that sub-MIC CAZ might affect the pathogenic capacity of UPEC. In this study, the results showed that sub-MIC CAZ could significantly inhibit the adhesion ability, biofilm formation and swimming and swarming motilities of UPEC isolated from recurrent UTI patient. Meanwhile, obvious decreased hemolytic activity and cytotoxicity were observed in CAZ-pretreated UPEC. Furthermore, qRT-PCR results confirmed the downregulating ability of CAZ on the expression of adhesion genes, motility genes, toxin gene and signal molecule synthesis genes, which are important for virulence and biofilm formation of UPEC. Pre-treatment of UPEC with sub-MIC CAZ resulted in the reduced adhesion to human bladder epithelial cell 5637 and the decreased numbers of intracellular bacterial communities in cells. Consistent with the results in vitro, the pretreatment of CAZ resulted in the reduction of UPEC load in the bladder and the less severity of UPEC-induced inflammation compared with control group. The present study results indicated that sub-MIC CAZ could decrease the pathogenicity of UPEC and might be served as an effective antimicrobial agent to combat recurrent UTI caused by UPEC.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Zhang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Healthcare Security Administration, Chongqing, 401120, China
| | - Qian Yuan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
19
|
Abstract
In the past decade, the frequency of chronic wounds in older population has increased, and their impact on quality of life is substantial. Chronic wounds are a public health problem associated with very high economic and psychosocial costs. These wounds result from various pathologies and comorbidities, such arterial and venous insufficiency, diabetes mellitus and continuous skin pressure. Recently, the role of infection and biofilms in the healing of chronic wounds has been the subject of considerable research. This paper presents an overview of various methods and products used to manage chronic wounds and discusses recent advances in wound care. To decide on the best treatment for any wound, it is crucial to holistically assess the patient and the wound. Additionally, multiple strategies could be used to prevent or treat chronic wounds.
Collapse
Affiliation(s)
- Maria Azevedo
- Researcher, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Carmen Lisboa
- Lecturer and Researcher in Medical Microbiology, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Acácio Rodrigues
- Lecturer and Researcher in Medical Microbiology, Faculty of Medicine, Porto; Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital São João, Portugal
| |
Collapse
|
20
|
Abdel-Rhman SH, Rizk DE, Abdelmegeed ES. Effect of Sub-Minimum Inhibitory Concentrations of Tyrosol and EDTA on Quorum Sensing and Virulence of Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:3501-3511. [PMID: 33116669 PMCID: PMC7550211 DOI: 10.2147/idr.s264805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Pseudomonas aeruginosa is considered a dangerous pathogen, as it causes many human diseases, besides that it is resistant to almost all types of antibacterial agents. So, new strategies to overcome P. aeruginosa infection have evolved to attenuate its virulence factors and inhibit its quorum-sensing (QS) activity. Purpose This study investigated the effect of tyrosol and EDTA as anti-quorum-sensing and antivirulence agents against P. aeruginosa PAO1. Methods Anti-quorum activity of sub-minimum inhibitory concentrations (sub-MICs) of tyrosol and EDTA was tested using Chromobacterium violaceum (CV 12,472) biosensor bioassay. Miller assay was used to assess the inhibition of QS signal molecules by β-galactosidase activity determination. Also, their effects on the production of protease, lipase, lecithinase, and motility were tested. The inhibitory effects of these molecules on QS regulatory genes and exotoxins genes expression were evaluated by real-time PCR. Results Tyrosol and EDTA at sub-MICs inhibited the production of violacein pigment. Both compounds inhibited QS molecules production and their associated virulence factors (protease, lipase, lecithinase, and motility) (P≤ 0.05). Besides, the expression levels of QS regulatory genes (lasI, lasR, rhƖI, rhIR, pqsA, and pqsR) and exotoxins genes (exoS and exoY) were significantly reduced (P≤ 0.05). Conclusion Both tyrosol and EDTA can be used to fight P. aeruginosa infection as anti-quorum-sensing and antivirulence agents at their sub-MICs.
Collapse
Affiliation(s)
- Shaymaa H Abdel-Rhman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Taibah University, AlMadinah Al Munawwarah, Saudi Arabia
| | - Dina E Rizk
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman S Abdelmegeed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Hemmati F, Salehi R, Ghotaslou R, Samadi Kafil H, Hasani A, Gholizadeh P, Nouri R, Ahangarzadeh Rezaee M. Quorum Quenching: A Potential Target for Antipseudomonal Therapy. Infect Drug Resist 2020; 13:2989-3005. [PMID: 32922047 PMCID: PMC7457774 DOI: 10.2147/idr.s263196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
There has been excessive rate of use of antibiotics to fight Pseudomonas aeruginosa (P. aeruginosa) infections worldwide, which has consequently caused the increased resistance to multiple antibiotics in this pathogen. Due to the widespread resistance and the current poor effect of antibiotics consumed to treat P. aeruginosa infections, finding some novel alternative therapeutic methods are necessary for the treatment of infections. The P. aeruginosa biofilms can cause severe infections leading to the increased antibiotic resistance and mortality rate among the patients. In this regard, there are no approaches that can efficiently manage these infections; therefore, novel and effective antimicrobial and antibiofilm agents are needed to control and treat these bacterial infections. Quorum sensing inhibitors (QSIs) or quorum quenchings (QQs) are now considered as potential therapeutic alternatives and/or adjuvants to the current failing antibiotics, which can control the virulence traits of the pathogens, so as a result, the host immune system can quickly eliminate bacteria. Thus, the aims of this review article were presenting a brief explanation of the research reports on the natural and synthetic QSIs of P. aeruginosa, and the assessment of the current understanding on the QS mechanisms and various QQ strategies in P. aeruginosa.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 PMCID: PMC7418596 DOI: 10.3389/fmicb.2020.01668] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO’s critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
23
|
Zhang Y, Pan X, Liao S, Jiang C, Wang L, Tang Y, Wu G, Dai G, Chen L. Quantitative Proteomics Reveals the Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas aeruginosa Biofilms. J Proteome Res 2020; 19:3109-3122. [PMID: 32567865 DOI: 10.1021/acs.jproteome.0c00114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decline of clinically effective antibiotics has made it necessary to develop more effective antimicrobial agents, especially for refractory biofilm-related infections. Silver nanoparticles (AgNPs) are a new type of antimicrobial agent that can eradicate biofilms and reduce bacterial resistance, but its anti-biofilm mechanism has not been elucidated. In this study, we investigated the molecular mechanism of AgNPs against multidrug-resistant Pseudomonas aeruginosa by means of anti-biofilm tests, scanning electron microscopy (SEM), and tandem mass tag (TMT)-labeled quantitative proteomics. The results of anti-biofilm tests demonstrated that AgNPs inhibited the formation of P. aeruginosa biofilm and disrupted its preformed biofilm. SEM showed that when exposed to AgNPs, the structure of the P. aeruginosa biofilm was destroyed, along with significant reduction of its biomass. TMT-labeled quantitative proteomic analysis revealed that AgNPs could defeat the P. aeruginosa biofilm in multiple ways by inhibiting its adhesion and motility, stimulating strong oxidative stress response, destroying iron homeostasis, blocking aerobic and anaerobic respiration, and affecting quorum sensing systems. Our findings offer a new insight into clarifying the mechanism of AgNPs against biofilms, thus providing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Shijing Liao
- Department of Clinical Laboratory, The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Congyuan Jiang
- Hunan Anson Biotechnology Company Ltd., Changsha 410008, China
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yurong Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Gan Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
24
|
Azevedo MM, Lisboa C, Cobrado L, Pina-Vaz C, Rodrigues A. Hard-to-heal wounds, biofilm and wound healing: an intricate interrelationship. ACTA ACUST UNITED AC 2020; 29:S6-S13. [PMID: 32167817 DOI: 10.12968/bjon.2020.29.5.s6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hard-to-heal wounds are a major public health problem that incur high economic costs. A major source of morbidity, they can have an overwhelming impact on patients, caregivers and society. In contrast to acute wound healing, which follows an 'orderly and timely reparative process', the healing of hard-to-heal wounds is delayed because the usual biological progression is interrupted. This article discusses hard-to-heal wounds, the impact they have on patients and healthcare systems, and how biofilms and other factors affect the wound-healing process. Controlling and preventing infection is of utmost importance for normal wound healing. Rational use of anti-infectious agents is crucial and is particularly relevant in the context of rising healthcare costs. Knowledge of the complex relationship between hard-to-heal wounds, biofilm formation and wound healing is vital for efficient management of hard-to-heal wounds.
Collapse
Affiliation(s)
- Maria-Manuel Azevedo
- Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
| | - Carmen Lisboa
- Teacher, Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal, and Physician, Department of Dermatovenereology, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Luís Cobrado
- Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
| | - Cidália Pina-Vaz
- Teacher, Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal
| | - Acácio Rodrigues
- Teacher and Head, Microbiology Department, Department of Pathology and Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal, and Physician, Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital São João, Porto, Portugal
| |
Collapse
|
25
|
Abstract
Bacteria can migrate in groups of flagella-driven cells over semisolid surfaces. This coordinated form of motility is called swarming behavior. Swarming is associated with enhanced virulence and antibiotic resistance of various human pathogens and may be considered as favorable adaptation to the diverse challenges that microbes face in rapidly changing environments. Consequently, the differentiation of motile swarmer cells is tightly regulated and involves multi-layered signaling networks. Controlling swarming behavior is of major interest for the development of novel anti-infective strategies. In addition, compounds that block swarming represent important tools for more detailed insights into the molecular mechanisms of the coordination of bacterial population behavior. Over the past decades, there has been major progress in the discovery of small-molecule modulators and mechanisms that allow selective inhibition of swarming behavior. Herein, an overview of the achievements in the field and future directions and challenges will be presented.
Collapse
Affiliation(s)
- Sina Rütschlin
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| | - Thomas Böttcher
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| |
Collapse
|
26
|
Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. Clinical Impact of Antibiotics for the Treatment of Pseudomonas aeruginosa Biofilm Infections. Front Microbiol 2020; 10:2894. [PMID: 31998248 PMCID: PMC6962142 DOI: 10.3389/fmicb.2019.02894] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023] Open
Abstract
Bacterial biofilms are highly recalcitrant to antibiotic therapies due to multiple tolerance mechanisms. The involvement of Pseudomonas aeruginosa in a wide range of biofilm-related infections often leads to treatment failures. Indeed, few current antimicrobial molecules are still effective on tolerant sessile cells. In contrast, studies increasingly showed that conventional antibiotics can, at low concentrations, induce a phenotype change in bacteria and consequently, the biofilm formation. Understanding the clinical effects of antimicrobials on biofilm establishment is essential to avoid the use of inappropriate treatments in the case of biofilm infections. This article reviews the current knowledge about bacterial growth within a biofilm and the preventive or inducer impact of standard antimicrobials on its formation by P. aeruginosa. The effect of antibiotics used to treat biofilms of other bacterial species, as Staphylococcus aureus or Escherichia coli, was also briefly mentioned. Finally, it describes two in vitro devices which could potentially be used as antibiotic susceptibility testing for adherent bacteria.
Collapse
Affiliation(s)
- Elodie Olivares
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France.,BioFilm Pharma SAS, Saint-Beauzire, France
| | | | - Christian Provot
- BioFilm Pharma SAS, Saint-Beauzire, France.,BioFilm Control SAS, Saint-Beauzire, France
| | - Gilles Prévost
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France
| | - Thierry Bernardi
- BioFilm Pharma SAS, Saint-Beauzire, France.,BioFilm Control SAS, Saint-Beauzire, France
| | - François Jehl
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France
| |
Collapse
|
27
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 DOI: 10.3389/fmicb.2020.0166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 05/20/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO's critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
28
|
Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 2019; 104:799-816. [PMID: 31820066 DOI: 10.1007/s00253-019-10190-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is known as an opportunistic pathogen whose one of the antibiotic resistance mechanisms includes biofilm formation and virulence factor production. The present study showed that the sub-minimum inhibitory concentration (sub-MIC) of streptomycin inhibited the formation of biofilm and eradicated the established mature biofilm. Streptomycin at sub-MIC was also capable of inhibiting biofilm formation on the urinary catheters. In addition, the sub-MIC of streptomycin attenuated the bacterial virulence properties as confirmed by both phenotypic and gene expression studies. The optimal conditions for streptomycin to perform anti-biofilm and anti-virulence activities were proposed as alkaline TSB media (pH 7.9) at 35 °C. However, sub-MIC of streptomycin also exhibited a comparative anti-biofilm efficacy in LB media at similar pH level and temperature. Furthermore, this condition also improved the biofilm inhibition and eradication properties of streptomycin, tobramycin and tetracycline towards the biofilm formed by a clinical isolate of P. aeruginosa. Findings from the present study provide an important insight for further studies on the mechanisms of biofilm inhibition and dispersion of pre-existing biofilm by streptomycin as well as tobramycin and tetracycline under a specific culture environment.
Collapse
|
29
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Regulation and controlling the motility properties of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 104:33-49. [DOI: 10.1007/s00253-019-10201-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
30
|
Sun F, Yuan Q, Wang Y, Cheng L, Li X, Feng W, Xia P. Sub-minimum inhibitory concentration ceftazidime inhibits Escherichia coli biofilm formation by influencing the levels of the ibpA gene and extracellular indole. J Chemother 2019; 32:7-14. [PMID: 31631801 DOI: 10.1080/1120009x.2019.1678913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Escherichia coli is a common pathogen of bacterial biofilm infections. Sub-minimum inhibitory concentration ceftazidime (sub-MIC CAZ) could inhibit the biofilm formation of E. coli. Deletion of the ibpAB genes could increase the extracellular indole concentration of E. coli and then inhibit biofilm formation. Therefore, we speculated that sub-MIC CAZ might inhibit biofilm formation via ibpAB. In this study, the results showed that sub-MIC CAZ could significantly inhibit biofilm formation, swimming motility and the expression of the ibpA gene, while it could increase the expression of tnaA gene and extracellular indole concentration. Knockout of the ibpA gene resulted in a decrease in biofilm formation and swimming motility and an increase in the indole concentration. When treated with sub-MIC CAZ, the tnaA gene expression, indole concentration, biofilm formation and swimming motility of MG1655 ΔibpA were similar to those of the control group. The results indicated that sub-MIC CAZ might inhibit the biofilm formation of E. coli by increasing the extracellular indole concentration and downregulating the ibpA gene.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qian Yuan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Cheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyu Li
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
31
|
Taha MN, Saafan AE, Ahmedy A, El Gebaly E, Khairalla AS. Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1. J Microbiol 2019; 57:618-625. [PMID: 31054133 DOI: 10.1007/s12275-019-8548-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 11/28/2022]
Abstract
Quorum sensing (QS) regulates virulence factor expression in Pseudomonas aeruginosa. Inhibiting the QS-controlled virulence factors without inhibiting the growth of P. aeruginosa is a promising approach for overcoming the widespread resistance of P. aeruginosa. This study was proposed to investigate the effects of two novel synthetic peptides on the biofilm development and virulence factor production of P. aeruginosa. The tested strain was P. aeruginosa PAO1. The results indicated that both of the synthetic peptides (LIVRHK and LIVRRK) inhibited (P < 0.05) the formation of biofilms and the production of virulence factors, including pyocyanin, protease, and rhamnolipids, without inhibiting the growth of PAO1. Additionally, we detected transcriptional changes related to QS and found a significant reduction in the levels of gene expression of lasI, lasR, rhlI, and rhlR. This study demonstrates that LIVRRK and LIVRHK are novel synthetic peptides that can act as potent inhibitors of QS-regulated virulence factors in P. aeruginosa. Moreover, these synthetic peptides have potential applications in the treatment of biofilmrelated diseases. Both peptides may be able to control chronic infections and biofilm-associated problems of P. aeruginosa.
Collapse
Affiliation(s)
- Mostafa N Taha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Amal E Saafan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - A Ahmedy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman El Gebaly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed S Khairalla
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
32
|
Liu J, Cai M, Yan H, Fu J, Wu G, Zhao Z, Zhao Y, Wang Y, Sun Y, You Y, Lin L, Huang J, Huang R, Zeng J. Yunnan Baiyao reduces hospital-acquired pressure ulcers via suppressing virulence gene expression and biofilm formation of Staphylococcus aureus. Int J Med Sci 2019; 16:1078-1088. [PMID: 31523169 PMCID: PMC6743274 DOI: 10.7150/ijms.33723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023] Open
Abstract
Yunnan Baiyao (YB) as a kind of famous Chinese herbal medicine, possessed hemostatic, invigorating the circulation of blood, and anti-inflammatory effects. Identifying strategies to protect patients at risk for hospital-acquired pressure ulcers (HAPU) is essential. Herein, our results showed that YB treatment can effectively reduce the acne wound area and improve efficacy in a comparative study of 60 cases HAPU patients with S. aureus positive of acne wound pathogens. Furthermore, YB inhibited HIa expression and suppressed accessory gene regulator (agr) system controlled by regulatory RNA II and RNA III molecule using pALC1740, pALC1742 and pALC1743 S. aureus strain linked to gfpuvr reporter gene. Moreover, YB downregulated cao mRNA expression and inhibited coagulase activity by RT-PCR, slide and tube coagulase test. Additionally, YB downregulated seb, sec, sed, and tsst-1 mRNA expression to suppress enterotoxin and tsst-1 secretion and adhesion function related genes sarA, icaA, and cidA mRNA expression. Taken together, the data suggest that YB may reduce HAPU via suppressing virulence gene expression and biofilm formation of S. aureus.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Mufa Cai
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Huimin Yan
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Guocai Wu
- Department of Blood Internal Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zuguo Zhao
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Zhao
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yan Wang
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongke You
- School of Chinese Medicine, The University of Hongkong, Pokfulam, Hongkong
| | - Liyao Lin
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
33
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1167] [Impact Index Per Article: 166.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
34
|
Poynton SL, Ostrenga L, Witwer KW. Swarming and Aggregation in the Parasitic Diplomonad Flagellate Spironucleus vortens. J Eukaryot Microbiol 2018; 66:545-552. [PMID: 30341793 DOI: 10.1111/jeu.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
Pathogenicity, evolutionary history, and unusual cell organization of diplomonads are well known, particularly for Giardia and Spironucleus; however, behavior of these aerotolerant anaerobes is largely unknown. Addressing this deficit, we studied behavior of the piscine diplomonad Spironucleus vortens (ATCC 50386) in in vitro culture. Spironucleus vortens trophozoites from Angelfish, Pterophyllum scalare, were maintained axenically in modified liver digest, yeast extract, and iron (LYI) medium, at 22 °C in the dark, and subcultured weekly. Cultures were monitored every 1-2 d, by removing an aliquot, and loading cells into a hemocytometer chamber, or onto a regular microscope slide. We observed three distinct swimming behaviors: (i) spontaneous formation of swarms, reaching 200 μm in diameter, persisting for up to several min in situ, (ii) directional movement of the swarm, via collective motility, and (iii) independent swimming of trophozoites to form a band (aggregation), presumably at the location of optimal environmental conditions. These behaviors have not previously been reported in Spironucleus. The observation that flagellate motility can change, from individual self-propulsion to complex collective swarming motility, prompts us to advocate S. vortens as a new model for study of group behavioral dynamics, complementing emerging studies of collective swimming in flagellated bacteria.
Collapse
Affiliation(s)
- Sarah L Poynton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 833 North Broadway, Baltimore, 21205, Maryland
| | - Lauren Ostrenga
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 833 North Broadway, Baltimore, 21205, Maryland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 833 North Broadway, Baltimore, 21205, Maryland.,Department of Neurology, Johns Hopkins University School of Medicine, 833 North Broadway, Baltimore, 21205, Maryland
| |
Collapse
|
35
|
Heidari A, Noshiranzadeh N, Haghi F, Bikas R. Inhibition of quorum sensing related virulence factors of Pseudomonas aeruginosa by pyridoxal lactohydrazone. Microb Pathog 2017; 112:103-110. [PMID: 28939255 DOI: 10.1016/j.micpath.2017.09.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/03/2023]
Abstract
Pseudomonas aeruginosa quorum sensing (QS) system is a cell to cell signaling mechanism that regulates virulence factors and pathogenicity. Therefore, the QS system in P. aeruginosa may be an important target for pharmacological intervention. The present study aimed to investigate the effects of sub-MIC concentrations of (S,E)-2-hydroxy-N-(3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propane hydrazide (pyridoxal lactohydrazone) against P. aeruginosa QS related virulence factors. We investigated the effect of sub-MIC concentrations of chiral pyridoxal lactohydrazone, which formed by the reaction of chiral lactic acid hydrazide and pyridoxal (one form of Vitamin B6) as bioactive reagents, on virulence factors. Treated PAO1 cultures in the presence of tested compound at 1/4 and 1/16 MIC (32 and 8 μg/mL respectively) showed significant inhibition of virulence factors including motility, alginate and pyocyanin production and susceptibility to H2O2 (P < 0.001). Also, the pyridoxal lactohydrazone showed anti-QS activity in Chromobacterium violaceum CV026 biosensor bioassay. Because of quorum sensing is a promising target for anti-virulence therapy and also important role of LasR regulatory protein in the initiation of P. aeruginosa QS system, we carried out molecular docking for understanding the interactions of pyridoxal lactohydrazone with the LasR receptor. The results of docking study suggested that the pyridoxal lactohydrazone has potential to inhibit the LasR protein. The results indicated that sub-MIC concentrations of this compound exhibited inhibitory effect on P. aeruginosa QS related virulence factors.
Collapse
Affiliation(s)
- Azam Heidari
- Department of Chemistry, Faculty of Sciences, University of Zanjan, 45371-38791, Zanjan, IR, Iran
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Sciences, University of Zanjan, 45371-38791, Zanjan, IR, Iran.
| | - Fakhri Haghi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111, Zanjan, IR, Iran.
| | - Rahman Bikas
- Department of Chemistry, Faculty of Sciences, University of Zanjan, 45371-38791, Zanjan, IR, Iran
| |
Collapse
|
36
|
Hossain MA, Lee SJ, Park NH, Mechesso AF, Birhanu BT, Kang J, Reza MA, Suh JW, Park SC. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Sci Rep 2017; 7:10618. [PMID: 28878346 PMCID: PMC5587592 DOI: 10.1038/s41598-017-10997-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/17/2017] [Indexed: 01/10/2023] Open
Abstract
Quorum sensing (QS) is a cell density-dependent regulation of virulent bacterial gene expression by autoinducers that potentially pertains in the epidemic of bacterial virulence. This study was initially designed to evaluate the effect of 5 phenolic compounds in the modulation of QS and virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa, and to determine the mechanisms of their effects. Biosensor strains were used to assess antibacterial and anti-QS effect of these compounds. Only methyl gallate (MG) among these compounds demonstrated profound anti-QS effect in the preliminary study, and thus only MG was utilized further to evaluate the effects on the synthesis and activity of acyl homoserine lactone (AHL) in C. violaceum and on the modulation of biofilm, motility, proteolytic, elastase, pyocyanin, and rhamnolipid activity in P. aeruginosa. Finally, the effect of MG on the expression of QS-regulated genes of P. aeruginosa was verified. MG suppressed both the synthesis and activity of AHL in C. violaceum. It also restricted the biofilm formation and other QS-associated virulence factor of P. aeruginosa. MG concentration-dependently suppressed the expression of lasI/R, rhlI/R, and pqsA of P. aeruginosa and was non-toxic in in vitro study. This is the first report of the anti-QS mechanism of MG.
Collapse
Affiliation(s)
- Md Akil Hossain
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea.,Veterinary drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Seung-Jin Lee
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Na-Hye Park
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Abraham Fikru Mechesso
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Biruk Tesfaye Birhanu
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - JeongWoo Kang
- Veterinary drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Md Ahsanur Reza
- Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University (Outer Campus), Babugonj, Barisal, 8210, Bangladesh
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Division of Bioscience and Bioinformatics, Science campus, Myongji University, 449-728, Yongin, Gyeonggi, Republic of Korea.
| | - Seung-Chun Park
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
37
|
Anti-biofilm effects of anthranilate on a broad range of bacteria. Sci Rep 2017; 7:8604. [PMID: 28819217 PMCID: PMC5561115 DOI: 10.1038/s41598-017-06540-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/14/2017] [Indexed: 01/16/2023] Open
Abstract
Anthranilate, one of tryptophan degradation products has been reported to interfere with biofilm formation by Pseudomonas aeruginosa. Here, we investigated the effects of anthranilate on biofilm formation by various bacteria and the mechanisms responsible. Anthranilate commonly inhibited biofilm formation by P. aeruginosa, Vibrio vulnificus, Bacillus subtilis, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus, and disrupted biofilms preformed by these bacteria. Because anthranilate reduced intracellular c-di-GMP and enhanced swimming and swarming motilities in P. aeruginosa, V. vulnificus, B. subtilis, and S. enterica, it is likely that anthranilate disrupts biofilms by inducing the dispersion of these bacteria. On the other hand, in S. aureus, a non-flagellate bacterium that has no c-di-GMP signaling, anthranilate probably inhibits biofilm formation by reducing slime production. These results suggest that anthranilate has multiple ways for biofilm inhibition. Furthermore, because of its good biofilm inhibitory effects and lack of cytotoxicity to human cells even at high concentration, anthranilate appears to be a promising agent for inhibiting biofilm formation by a broad range of bacteria.
Collapse
|
38
|
Bakkiyaraj D, Sritharadol R, Padmavathi AR, Nakpheng T, Srichana T. Anti-biofilm properties of a mupirocin spray formulation against Escherichia coli wound infections. BIOFOULING 2017; 33:591-600. [PMID: 28686044 DOI: 10.1080/08927014.2017.1337100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Mupirocin ointment is a widely used topical drug for the treatment of bacterial skin infections. However, ointments have some limitations which motivated the development of a film forming spray of mupirocin. Mupirocin spray (2%) was formulated with Eudragit E100 as a film forming agent and tested for its antibacterial and anti-biofilm activities against Escherichia coli, a skin pathogen causing wound and surgical site infections. Treatment with mupirocin spray resulted in significant antibacterial and anti-biofilm activities (inhibition and disruption) with single spray and sub-actual dose concentrations at par with the commercial ointment concentration. The spray formulation was found to be non-toxic to fibroblast cells and greatly resisted removal from the site of application upon washing, in contrast to the ointment which was significantly removed after a single wash. This is the first study to develop and evaluate a spray formulation for mupirocin that forms a stable thin film for sustained release of the drug.
Collapse
Affiliation(s)
- Dhamodharan Bakkiyaraj
- a Nanotec-PSU Excellence Center on Drug Delivery System, Faculty of Pharmaceutical Sciences , Prince of Songkla University , Hat Yai , Thailand
| | - Rutthapol Sritharadol
- b Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , Prince of Songkla University , Hat Yai , Thailand
| | - Alwar Ramanujam Padmavathi
- a Nanotec-PSU Excellence Center on Drug Delivery System, Faculty of Pharmaceutical Sciences , Prince of Songkla University , Hat Yai , Thailand
| | - Titpawan Nakpheng
- a Nanotec-PSU Excellence Center on Drug Delivery System, Faculty of Pharmaceutical Sciences , Prince of Songkla University , Hat Yai , Thailand
| | - Teerapol Srichana
- a Nanotec-PSU Excellence Center on Drug Delivery System, Faculty of Pharmaceutical Sciences , Prince of Songkla University , Hat Yai , Thailand
- b Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , Prince of Songkla University , Hat Yai , Thailand
| |
Collapse
|
39
|
Sun Y, Sun F, Feng W, Qiu X, Liu Y, Yang B, Chen Y, Xia P. Hyperoside inhibits biofilm formation of Pseudomonas aeruginosa. Exp Ther Med 2017; 14:1647-1652. [PMID: 28810631 DOI: 10.3892/etm.2017.4641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common pathogen in hospital-acquired infection and is readily able to form biofilms. Due to its high antibiotic resistance, traditional antibacterial treatments exert a limited effect on P. aeruginosa biofilm infections. It has been indicated that hyperoside inhibits P. aeruginosa PAO1 (PAO1) biofilm formation without affecting growth. Therefore, the current study examined the biofilm formation and quorum sensing (QS) system of PAO1 in the presence of hyperoside. Confocal laser scanning microscopy analysis demonstrated that hyperoside significantly inhibited biofilm formation. It was also observed that hyperoside inhibited twitching motility in addition to adhesion. Data from reverse transcription-quantitative polymerase chain reaction indicated that hyperoside inhibited the expression of lasR, lasI, rhlR and rhlI genes. These results suggest that the QS-inhibiting effect of hyperoside may lead to a reduction in biofilm formation. However, the precise mechanism of hyperoside on P. aeruginosa pathogenicity remains unclear and requires elucidation in additional studies.
Collapse
Affiliation(s)
- Yixuan Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuewen Qiu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yao Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bo Yang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yongchuan Chen
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
40
|
Bahari S, Zeighami H, Mirshahabi H, Roudashti S, Haghi F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J Glob Antimicrob Resist 2017; 10:21-28. [PMID: 28591665 DOI: 10.1016/j.jgar.2017.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/08/2017] [Accepted: 03/03/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa quorum sensing (QS) circuits regulate virulence factors and co-ordinate bacterial pathogenicity. This study aimed to investigate the inhibitory activity of subinhibitory concentrations of curcumin with azithromycin and gentamicin against P. aeruginosa QS-related genes and virulence factors. METHODS The minimum inhibitory concentrations (MICs) and synergistic activity of curcumin with azithromycin and gentamicin against P. aeruginosa PAO1 were determined using broth microdilution and checkerboard titration methods, respectively. The activity of sub-MICs (1/4× and 1/16× MIC) of curcumin on the QS signal molecules was assessed using a reporter strain assay. The influence of sub-MICs of curcumin, azithromycin and gentamicin alone and in combination on motility and biofilm formation was also determined and was confirmed by RT-PCR to test the expression of the QS regulatory genes lasI, lasR, rhlI and rhlR. RESULTS Addition of curcumin drastically decreased the MIC of azithromycin and gentamicin. Curcumin showed synergistic effects with azithromycin and gentamicin. Treated PAO1 cultures in the presence of curcumin showed a significant reduction of signals C12-HSL and C4-HSL (P<0.05). Sub-MICs (1/4× and 1/16× MIC) of curcumin, azithromycin and gentamicin alone and in combination significantly reduced swarming and twitching motilities as well as biofilm formation. Expression of QS regulatory genes lasI, lasR, rhlI and rhlR using 1/4× MIC of curcumin, azithromycin and gentamicin alone and in combination was decreased significantly compared with untreated PAO1. CONCLUSIONS These results indicate that a combination of sub-MIC of curcumin with azithromycin and gentamicin exhibited synergism against P. aeruginosa QS systems.
Collapse
Affiliation(s)
- Shahin Bahari
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Habib Zeighami
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hesam Mirshahabi
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shekoufeh Roudashti
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fakhri Haghi
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
41
|
Gupta P, Chhibber S, Harjai K. Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence. Indian J Med Res 2017; 143:643-51. [PMID: 27488009 PMCID: PMC4989839 DOI: 10.4103/0971-5916.187114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background & objectives: Biofilms formed by Pseudomonas aeruginosa lead to persistent infections. Use of antibiotics for the treatment of biofilm induced infection poses a threat towards development of resistance. Therefore, the research is directed towards exploring the property of antibiotics which may alter the virulence of an organism besides altering its growth. The aim of this study was to evaluate the role of subinhibitory concentration of ciprofloxacin (CIP) in inhibiting biofilm formation and virulence of P. aeruginosa. Methods: Antibiofilm potential of subinhibitory concentration of CIP was evaluated in terms of log reduction, biofilm forming capacity and coverslip assay. P. aeruginosa isolates (grown in the presence and absence of sub-MIC of CIP) were also evaluated for inhibition in motility, virulence factor production and quorum sensing (QS) signal production. Results: Sub-minimum inhibitory concentration (sub-MIC) of CIP significantly reduced the motility of P. aeruginosa stand and strain and clinical isolates and affected biofilm forming capacity. Production of protease, elastase, siderophore, alginate, and rhamnolipid was also significantly reduced by CIP. Interpretation & conclusions: Reduction in virulence factors and biofilm formation was due to inhibition of QS mechanism which was indicated by reduced production of QS signal molecules by P. aeruginosa in presence of subinhibitory concentration of CIP.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
42
|
Heidari A, Haghi F, Noshiranzadeh N, Bikas R. (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene) propane hydrazide as a quorum sensing inhibitor of Pseudomonas aeruginosa. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1908-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:AAC.01906-16. [PMID: 28031194 DOI: 10.1128/aac.01906-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a multifaceted pathogen causing a variety of biofilm-mediated infections, including catheter-associated urinary tract infections (CAUTIs). The high prevalence of CAUTIs in hospitals, their clinical manifestations, such as urethritis, cystitis, pyelonephritis, meningitis, urosepsis, and death, and the associated economic challenges underscore the need for management of these infections. Biomaterial modification of urinary catheters with two drugs seems an interesting approach to combat CAUTIs by inhibiting biofilm. Previously, we demonstrated the in vitro efficacy of urinary catheters impregnated with azithromycin (AZM) and ciprofloxacin (CIP) against P. aeruginosa Here, we report how these coated catheters impact the course of CAUTI induced by P. aeruginosa in a murine model. CAUTI was established in female LACA mice with uncoated or AZM-CIP-coated silicone implants in the bladder, followed by transurethral inoculation of 108 CFU/ml of biofilm cells of P. aeruginosa PAO1. AZM-CIP-coated implants (i) prevented biofilm formation on the implant's surface (P ≤ 0.01), (ii) restricted bacterial colonization in the bladder and kidney (P < 0.0001), (iii) averted bacteriuria (P < 0.0001), and (iv) exhibited no major histopathological changes for 28 days in comparison to uncoated implants, which showed persistent CAUTI. Antibiotic implants also overcame implant-mediated inflammation, as characterized by trivial levels of inflammatory markers such as malondialdehyde (P < 0.001), myeloperoxidase (P < 0.05), reactive oxygen species (P ≤ 0.001), and reactive nitrogen intermediates (P < 0.01) in comparison to those in uncoated implants. Further, AZM-CIP-coated implants showed immunomodulation by manipulating the release of inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10 to the benefit of the host. Overall, the study demonstrates long-term in vivo effectiveness of AZM-CIP-impregnated catheters, which may possibly be a key to success in preventing CAUTIs.
Collapse
|
44
|
Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol 2017; 33:50. [DOI: 10.1007/s11274-016-2195-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022]
|
45
|
A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity. Sci Rep 2016; 6:39637. [PMID: 28000767 PMCID: PMC5175134 DOI: 10.1038/srep39637] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/24/2016] [Indexed: 02/03/2023] Open
Abstract
An ethyl acetate (EtOAc) extract isolated from the marine bacterium, Rheinheimera aquimaris QSI02, was found to exhibit anti-quorum sensing (anti-QS) activity. A subsequent bioassay-guided isolation protocol led to the detection of an active diketopiperazine factor, cyclo(Trp-Ser). Biosensor assay data showed that the minimum inhibitory concentration (MIC) of cyclo(Trp-Ser) ranged from 3.2 mg/ml to 6.4 mg/m for several microorganisms, including Escherichia coli, Chromobacterium violaceum CV026, Pseudomonas aeruginosa PA01, Staphylococcus aureus, and Candida albicans. Additionally, sub-MICs of cyclo(Trp-Ser) decreased the QS-regulated violacein production in C. violaceum CV026 by 67%. Furthermore, cyclo(Trp-Ser) can decrease QS-regulated pyocyanin production, elastase activity and biofilm formation in P. aeruginosa PA01 by 65%, 40% and 59.9%, respectively. Molecular docking results revealed that cyclo(Trp-Ser) binds to CviR receptor more rigidly than C6HSL with lower docking energy −8.68 kcal/mol, while with higher binding energy of −8.40 kcal/mol than 3-oxo-C12HSL in LasR receptor. Molecular dynamics simulation suggested that cyclo(Trp-Ser) is more easy to bind to CviR receptor than natural signaling molecule, but opposite in LasR receptor. These results suggest that cyclo(Trp-Ser) can be used as a potential inhibitor to control QS systems of C. violaceum and P. aeruginosa and provide increased the understanding of molecular mechanism that influences QS-regulated behaviors.
Collapse
|
46
|
Barr HL, Halliday N, Barrett DA, Williams P, Forrester DL, Peckham D, Williams K, Smyth AR, Honeybourne D, L Whitehouse J, Nash EF, Dewar J, Clayton A, Knox AJ, Cámara M, Fogarty AW. Diagnostic and prognostic significance of systemic alkyl quinolones for P. aeruginosa in cystic fibrosis: A longitudinal study. J Cyst Fibros 2016; 16:230-238. [PMID: 27773591 PMCID: PMC5345566 DOI: 10.1016/j.jcf.2016.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Background Pulmonary P. aeruginosa infection is associated with poor outcomes in cystic fibrosis (CF) and early diagnosis is challenging, particularly in those who are unable to expectorate sputum. Specific P. aeruginosa 2-alkyl-4-quinolones are detectable in the sputum, plasma and urine of adults with CF, suggesting that they have potential as biomarkers for P. aeruginosa infection. Aim To investigate systemic 2-alkyl-4-quinolones as potential biomarkers for pulmonary P. aeruginosa infection. Methods A multicentre observational study of 176 adults and 68 children with CF. Cross-sectionally, comparisons were made between current P. aeruginosa infection using six 2-alkyl-4-quinolones detected in sputum, plasma and urine against hospital microbiological culture results. All participants without P. aeruginosa infection at baseline were followed up for one year to determine if 2-alkyl-4-quinolones were early biomarkers of pulmonary P. aeruginosa infection. Results Cross-sectional analysis: the most promising biomarker with the greatest diagnostic accuracy was 2-heptyl-4-hydroxyquinoline (HHQ). In adults, areas under the ROC curves (95% confidence intervals) for HHQ analyses were 0.82 (0.75–0.89) in sputum, 0.76 (0.69–0.82) in plasma and 0.82 (0.77–0.88) in urine. In children, the corresponding values for HHQ analyses were 0.88 (0.77–0.99) in plasma and 0.83 (0.68–0.97) in urine. Longitudinal analysis: Ten adults and six children had a new positive respiratory culture for P. aeruginosa in follow-up. A positive plasma HHQ test at baseline was significantly associated with a new positive culture for P. aeruginosa in both adults and children in follow-up (odds ratio (OR) = 6.67;-95% CI:-1.48–30.1;-p = 0.01 and OR = 70; 95% CI: 5–956;-p < 0.001 respectively). Conclusions AQs measured in sputum, plasma and urine may be used to diagnose current infection with P. aeruginosa in adults and children with CF. These preliminary data show that plasma HHQ may have potential as an early biomarker of pulmonary P. aeruginosa. Further studies are necessary to evaluate if HHQ could be used in clinical practice to aid early diagnosis of P. aeruginosa infection in the future.
Collapse
Affiliation(s)
- Helen L Barr
- Division of Respiratory Medicine, University of Nottingham, City Hospital Campus, Nottingham, UK.
| | - Nigel Halliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Douglas L Forrester
- Division of Respiratory Medicine, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Daniel Peckham
- Leeds Adult Cystic Fibrosis Centre, St James's University Hospital, Leeds, UK
| | - Kate Williams
- Leeds Adult Cystic Fibrosis Centre, St James's University Hospital, Leeds, UK
| | - Alan R Smyth
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, UK
| | - David Honeybourne
- West Midlands Adult CF Centre, Heart of England, NHS Foundation Trust, Birmingham, UK
| | - Joanna L Whitehouse
- West Midlands Adult CF Centre, Heart of England, NHS Foundation Trust, Birmingham, UK
| | - Edward F Nash
- West Midlands Adult CF Centre, Heart of England, NHS Foundation Trust, Birmingham, UK
| | - Jane Dewar
- Wolfson Cystic Fibrosis Centre, Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Andrew Clayton
- Wolfson Cystic Fibrosis Centre, Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alan J Knox
- Division of Respiratory Medicine, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Andrew W Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, Clinical Sciences Building, University of Nottingham, Nottingham, UK
| |
Collapse
|
47
|
El-Shaer S, Shaaban M, Barwa R, Hassan R. Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl β-naphthylamide. J Med Microbiol 2016; 65:1194-1204. [PMID: 27498852 DOI: 10.1099/jmm.0.000327] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spread of multidrug-resistant Pseudomonas aeruginosa isolates constitutes a serious clinical challenge. Bacterial efflux machinery is a crucial mechanism of resistance among P. aeruginosa. Efflux inhibitors such as phenylalanine arginyl β-naphthylamide (PAβN) promote the bacterial susceptibility to antimicrobial agents. The pathogenesis of P. aeruginosa is coordinated via quorum sensing (QS). This study aims to find out the impact of efflux pump inhibitor, PAβN, on QS and virulence attributes in clinical isolates of P. aeruginosa. P. aeruginosa isolates were purified from urine and wound samples, and the antimicrobial susceptibility was carried out by disc diffusion method. The multidrug-resistant and the virulent isolates U16, U21, W19 and W23 were selected. PAβN enhanced their susceptibility to most antimicrobial agents. PAβN reduced QS signalling molecules N-3-oxo-dodecanoyl-l-homoserine lactone and N-butyryl-l-homoserine lactone without affecting bacterial viability. Moreover, PAβN eliminated their virulence factors such as elastase, protease, pyocyanin and bacterial motility. At the transcription level, PAβN significantly (P<0.01) diminished the relative expression of QS cascade (lasI, lasR, rhlI, rhlR, pqsA and pqsR) and QS regulated-type II secretory genes lasB (elastase) and toxA (exotoxin A) compared to the control untreated isolates U16 and U21. In addition, PAβN eliminated the relative expression of pelA (exopolysaccharides) in U16 and U21 isolates. Hence, P. aeruginosa-tested isolates became hypo-virulent upon using PAβN. PAβN significantly blocked the QS circuit and inhibited the virulence factors expressed by clinical isolates of P. aeruginosa. PAβN could be a prime substrate for development of QS inhibitors and prevention of P. aeruginosa pathogenicity.
Collapse
Affiliation(s)
- Soha El-Shaer
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Mona Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Ramadan Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
48
|
Wang X, Cai Y, Xing H, Wu W, Wang G, Li L, Chen J. Increased therapeutic efficacy of combination of azithromycin and ceftazidime on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. BMC Microbiol 2016; 16:124. [PMID: 27341798 PMCID: PMC4921005 DOI: 10.1186/s12866-016-0744-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/15/2016] [Indexed: 12/04/2022] Open
Abstract
Background Infection caused by ureteral stent indwelling is one of the most difficult medical problems, since once bacteria reside in biofilms they are extremely resistant to antibiotics as well as to the host immune defences. In this study we assessed the in vitro and in vivo efficacy of azithromycin and ceftazidime in preventing ureteral stent infection by Pseudomonas aeruginosa. Results The susceptibility testing with adherent bacteria showed that the biofilm was strongly inhibited by azithromycin treatment, ceftazidime against adherent bacteria in the presence of azithromycin showed the minimum inhibitory concentrations (MICs) and minimum bacteriocidal concentrations (MBCs) dramatically lower than those obtained in the absence of azithromycin. Moreover, ceftazidime plus azithromycin reduced twitching motility and production of rhamnolipid. For the single-treatment groups, in vivo intravenous injection of ceftazidime showed the highest inhibitory effect on bacterial load. Azithromycin prophylactic injection combined with ceftazidime showed increased inhibitory effect on bacterial load than that of each single antibiotic. Conclusions Combination of azithromycin and ceftazidime effectively prevent the formation of biofilm and reduced bacteria load of Pseudomonas aeruginosa compared to separate treatment of either of these two antibiotics. This combined treatment option have the potential to contribute to the success of Pseudomonas biofilm elimination in the clinical environment.
Collapse
Affiliation(s)
- Xianfeng Wang
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yongqing Cai
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Haiyan Xing
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wei Wu
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Guanying Wang
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ling Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jianhong Chen
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
49
|
Zeng J, Zhang N, Huang B, Cai R, Wu B, E S, Fang C, Chen C. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa. Sci Rep 2016; 6:24299. [PMID: 27075730 PMCID: PMC4830939 DOI: 10.1038/srep24299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 03/15/2016] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems.
Collapse
Affiliation(s)
- Jianming Zeng
- Dept. of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Ni Zhang
- Clinical Microbiology Laboratory, Guangdong Academy of Medical Sciences &Guangdong General Hospital, Guangzhou 510080, China
| | - Bin Huang
- Dept. of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China
| | - Renxin Cai
- Dept. of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Binning Wu
- Dept. of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Shunmei E
- Dept. of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Chengcai Fang
- Dept. of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Cha Chen
- Dept. of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou 510006, China
| |
Collapse
|
50
|
Ouyang J, Sun F, Feng W, Sun Y, Qiu X, Xiong L, Liu Y, Chen Y. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl Microbiol 2016; 120:966-74. [PMID: 26808465 DOI: 10.1111/jam.13073] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
AIMS The study aimed to perform a systematic investigation of the effects of quercetin on biofilm formation and virulence factors in Pseudomonas aeruginosa. METHODS AND RESULTS The Ps. aeruginosa strain PAO1 was selected as the test strain. The results indicated that quercetin did not impact the growth of PAO1 as determined by MIC and growth curve analysis. However, this compound significantly inhibited (P < 0·05) biofilm formation and production of virulence factors including pyocyanin, protease and elastase at a lower concentration than those for most previously reported plant extracts and substances. Considering the central role of quorum sensing (QS) in the regulation of biofilm and virulence factor, we further detected the transcriptional changes associated with QS and found that the expression levels of lasI, lasR, rhlI and rhlR were significantly reduced (P < 0·05) by 34, 68, 57 and 50%, respectively, in response to 16 μg ml(-1) quercetin. CONCLUSIONS This study indicated that quercetin is an effective inhibitor of biofilm formation and virulence factors in Ps. aeruginosa. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to demonstrate that quercetin is an effective inhibitor of QS, biofilm formation and virulence factors in Ps. aeruginosa. Furthermore, quercetin might have potential in fighting biofilm-related infections.
Collapse
Affiliation(s)
- J Ouyang
- Department of Pharmacy, Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - F Sun
- Department of Pharmacy, Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - W Feng
- Department of Pharmacy, Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - Y Sun
- Department of Pharmacy, Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - X Qiu
- Department of Pharmacy, Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - L Xiong
- Department of Pharmacy, Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - Y Liu
- Department of Pharmacy, Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - Y Chen
- Department of Pharmacy, Southwest Hospital of the Third Military Medical University, Chongqing, China
| |
Collapse
|