1
|
Zhang Q, Yang N, Mao R, Hao Y, Ma X, Teng D, Fan H, Wang J. A recombinant fungal defensin-like peptide-P2 combats Streptococcus dysgalactiae and biofilms. Appl Microbiol Biotechnol 2021; 105:1489-1504. [PMID: 33534018 DOI: 10.1007/s00253-021-11135-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Streptococcus dysgalactiae, considered one of the main pathogens that causes bovine mastitis, is a serious threat to humans and animals. However, the excessive use of antibiotics and the characteristic of S. dysgalactiae forming biofilms in mastitic teat canal have serious clinical implications. In this study, in vivo and in vitro multiple mechanisms of action of P2, a mutant of fungal defensin plectasin, against S. dysgalactiae were systematically and comprehensively investigated for the first time. P2 showed potent antibacterial activity against S. dysgalactiae (minimum inhibitory concentration, MIC = 0.23-0.46 μM) and rapid bactericidal action by 3.0 lg units reduction in 2-4 h. No resistant mutants appeared after 30-d serial passage of S. dysgalactiae in the presence of P2. The results of electron microscopy and flow cytometer showed that P2 induced membrane damage of S. dysgalactiae, causing the leakage of cellular content and eventually cell death. Besides, P2 effectively inhibited early biofilm formation, eradicated mature biofilms, and killed 99.9% persisters which were resistant to 100 × MIC vancomycin; and confocal laser scanning microscopy (CLSM) also revealed the potent antibacterial and antibiofilm activity of P2 (the thickness of biofilm reduced from 18.82 to 7.94 μm). The in vivo therapeutic effect of P2 in mouse mastitis model showed that it decreased the number of mammary bacteria and alleviated breast inflammation by regulating cytokines and inhibiting bacterial proliferation, which were superior to vancomycin. These data indicated that P2 maybe a potential candidate peptide for mastitis treatment of S. dysgalactiae infections. KEY POINTS: •P2 showed potential in vitro antibacterial characteristics towards S. dysgalactiae. •P2 eradicated biofilms, killed persisters, and induced cell death of S. dysgalactiae. •P2 could effectively protect mice from S. dysgalactiae infection in gland.
Collapse
Affiliation(s)
- Qingjuan Zhang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.,Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, China.,College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Na Yang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ruoyu Mao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ya Hao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xuanxuan Ma
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Da Teng
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Huan Fan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, China.
| | - Jianhua Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
2
|
Yoshida H, Takahashi T, Matsui H. A naturally occurring point mutation in the rocA gene of Streptococcus pyogenes confers the highly virulent phenotype. J Infect Chemother 2020; 27:578-584. [PMID: 33309630 DOI: 10.1016/j.jiac.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Mucoid (MTB313) and nonmucoid (MTB314) strains of group A streptococcus (GAS) emm (antiphagocytic M protein) type 1 were simultaneously isolated from a single patient suffering from streptococcal meningitis. In a CD46-expressing transgenic (CD46 Tg) mouse model of subcutaneous infection into both hind footpads with MTB313 or MTB314, MTB313 showed considerably higher virulence than MTB314. METHODS The comparative genomic analysis based on the whole-genome sequencing revealed that MTB313 possessed an amber codon within rocA (sensory transduction protein kinase), but MTB314 did not carry this stop codon. Thereafter, MAT101 was generated from MTB313 by introducing pRocA, which contained the full-length rocA from MTB314, into the cloning plasmid pLZ12-Km2. MAT100 was also generated by introducing pLZ12-Km2 into MTB313. RESULTS Although MTB313 and MAT100 showed large quantities of cell-associated hyaluronic acid (HA) in the culture pellets, MTB314 and MAT101 showed small quantities of HA production. Finally, higher mortalities were observed in the MTB313- or MAT100-infected CD46 Tg mice than the MTB314- or MAT101-infected CD46 Tg mice. CONCLUSIONS These data indicate the possibility that a spontaneous point mutation in the rocA gene led to the highly virulent phenotype of M1 GAS.
Collapse
Affiliation(s)
- Haruno Yoshida
- Department of Infection Control and Immunology, Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Takahashi
- Department of Infection Control and Immunology, Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidenori Matsui
- Department of Infection Control and Immunology, Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
3
|
Oh SI, Kim JW, Kim J, So B, Kim B, Kim HY. Molecular subtyping and antimicrobial susceptibility of Streptococcus dysgalactiae subspecies equisimilis isolates from clinically diseased pigs. J Vet Sci 2020; 21:e57. [PMID: 32735095 PMCID: PMC7402932 DOI: 10.4142/jvs.2020.21.e57] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 11/30/2022] Open
Abstract
Background Streptococcus dysgalactiae subspecies equisimilis (SDSE) acts as an etiological agent for lameness, neurological signs, and high mortality in pigs. Despite its importance in pig industries and zoonotic potential, little is known about the effects of this pathogen. Objectives This study aimed to determine the molecular characteristics and antimicrobial resistance of SDSE strains isolated from diseased pigs. Methods A total 11 SDSE isolates were obtained from diseased pigs. Bacterial identification, PCR for virulence genes, emm typing, and antimicrobial resistance genes, multilocus sequence typing, and antimicrobial susceptibility test were performed. Results Nine isolates were from piglets, and 8 showed lameness, sudden death, or neurological signs. The isolates were PCR-positive for sla (100%), sagA (100%), and scpA (45.5%), and only 1 isolate amplified the emm gene (stL2764). Eight different sequence types were detected, categorized into 2 clonal complexes and 4 singletons. All the isolates in this study were included in a small cluster, which also contained other strains derived from humans and horses. The minimum inhibitory concentrations for the tested beta-lactams were low, while those for macrolides, tetracyclines, and fluoroquinolones were relatively high. PCR analysis of the macrolide and tetracycline resistance genes demonstrated that the isolates carried erm(B) (18.2%, n = 2), mef(A/E) (9.1%, n = 1), tet(M) (18.2%, n = 2), and tet(O) (90.2%, n = 10). Two isolates presented a mutation in parC, which is associated with fluoroquinolone resistance. Conclusion This study provided insight into swine-derived SDSE, as it is related to veterinary medicine, and elucidated its zoonotic potential, in the context of molecular epidemiology and antimicrobial resistance in public health.
Collapse
Affiliation(s)
- Sang Ik Oh
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Jong Wan Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Jongho Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Byungjae So
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Ha Young Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
4
|
Matsui H, Nakatani Y, Yoshida H, Takizawa A, Takeuchi O, Øverby A, Takahashi T, Murayama SY, Matsuo K. Flesh-eatingStreptococcus pyogenestriggers the expression of receptor activator of nuclear factor-κB ligand. Cell Microbiol 2016; 18:1390-404. [DOI: 10.1111/cmi.12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Hidenori Matsui
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Yuriko Nakatani
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
- National Center for Child Health and Development; 2-10-1 Okura Setagaya-ku Tokyo 157-8535 Japan
| | - Haruno Yoshida
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Asako Takizawa
- Biomedical Laboratory, Biochemical Research Center, Kitasato Institute Hospital; Kitasato University; Minato-ku Tokyo 108-8642 Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Biochemical Research Center, Kitasato Institute Hospital; Kitasato University; Minato-ku Tokyo 108-8642 Japan
| | - Anders Øverby
- Research and Education Center for Clinical Pharmacy, School of Pharmaceutical Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Takashi Takahashi
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Somay Y. Murayama
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
- Laboratory of Molecular Cell Biology; Nihon University School of Pharmacy; 7-7-1 Narashinodai Funabashi-shi Chiba 274-8555 Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology; Keio University School of Medicine; Shinjuku-ku Tokyo 160-8582 Japan
| |
Collapse
|
5
|
Yoshida H, Takahashi T, Nakamura M, Øverby A, Takahashi T, Ubukata K, Matsui H. A highly susceptible CD46 transgenic mouse model of subcutaneous infection with Streptococcus dysgalactiae subspecies equisimilis. J Infect Chemother 2016; 22:229-34. [PMID: 26908231 DOI: 10.1016/j.jiac.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
Abstract
The Streptococcus dysgalactiae subspecies equisimilis (SDSE) possesses clinical similarities to group A streptococcus (GAS) and has recently been recognized as a causative pathogen of life-threatening streptococcal infections. Human membrane cofactor protein (CD46), a complement regulatory protein ubiquitously expressed on every cell type except for erythrocytes, has been implicated as a receptor for human-specific pathogens including GAS. In the present report, SDSE strain GGS_124 was isolated from a patient suffering from streptococcal toxic shock syndrome. When CD46-expressing transgenic (Tg) and non-Tg mice were infected subcutaneously into a hind footpad with 1 × 10(7) colony-forming units of GGS_124, both CD46 Tg and non-Tg mice showed similar levels of colonization in the popliteal lymph nodes at day 3 after infection. However, the following differences were found between CD46 Tg and non-Tg mice after infection. First, there was a statistically significant difference in mortality rates between CD46 Tg (33%) and non-Tg (0%) mice within 35 days after infection. Second, all surviving CD46 Tg mice developed ankle arthritis at day 35 after infection, whereas non-Tg mice did not develop ankle arthritis on the infected hind paws. Finally, CD46 Tg mice developed a pus-filled abscess accompanied by renal failure at day 6 or later after infection. These observations suggest that CD46, the host cell-surface pathogen receptor, functioned to attract GGS_124 into deep tissues, so that the subcutaneous infection with GGS_124 induced invasive streptococcal diseases in CD46 Tg mice.
Collapse
Affiliation(s)
- Haruno Yoshida
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsufumi Takahashi
- Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masahiko Nakamura
- Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Anders Øverby
- Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Takahashi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kimiko Ubukata
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
6
|
Watanabe S, Takemoto N, Ogura K, Miyoshi-Akiyama T. Severe invasive streptococcal infection by Streptococcus pyogenes
and Streptococcus dysgalactiae
subsp. equisimilis. Microbiol Immunol 2016; 60:1-9. [DOI: 10.1111/1348-0421.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology; Department of Infection and Immunity; School of Medicine; Jichi Medical University; 3311-1 Yakushiji Shimotsuke-shi Tochigi 329-0498
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| | - Kohei Ogura
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| |
Collapse
|
7
|
Early detection of septic arthritis caused by Streptococcus dysgalactiae subspecies equisimilis in a dog – a case report. ACTA VET BRNO 2014. [DOI: 10.2754/avb201483030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this report, a seven-year-old English Pointer male with Streptococcus dysgalactiae subsp. equisimilis arthritis joint infection is presented. The dog was referred to the Internal Medicine Department Policlinics with the symptoms of anorexia, weakness, swollen joints and ulcerative wounds on testes. On physical examination, the dog was depressed and manifesting discomfort during manipulation of the fore and hind legs’ joints. There were palpable effusions of the right carpal, elbow, and tibiotarsal joints. Haematological and serum biochemical analyses showed mild anaemia, moderate thrombocytopaenia, and elevated alanine aminotransferase. As soon as the synovial fluid aspirates were obtained aseptically from the right elbow, radiocarpal, and tibiotarsal joints, they were sent to bacteriological examination. Symptomatic and supportive treatment was initiated immediately. Empirical enrofloxacin therapy was initially started. Bacteria which were cultivated from the synovial fluid aspirates specimen were identified as S. equisimilis. The isolate was found to be resistant to enrofloxacin and susceptible to amoxycillin/clavulanic acid. According to the results of the antimicrobial susceptibility tests, enrofloxacin therapy was terminated and amoxycillin/clavulanic acid therapy was immediately started lasting for four weeks. The dog was treated successfully. To our knowledge, Streptococcus dysgalactiae subsp. equisimilis was isolated from the synovial fluid from a dog for the first time in Turkey, as it is rarely seen in dogs.
Collapse
|
8
|
Watanabe S, Kirikae T, Miyoshi-Akiyama T. Complete genome sequence of Streptococcus dysgalactiae subsp. equisimilis 167 carrying Lancefield group C antigen and comparative genomics of S. dysgalactiae subsp. equisimilis strains. Genome Biol Evol 2014; 5:1644-51. [PMID: 23918808 PMCID: PMC3787669 DOI: 10.1093/gbe/evt117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging human pathogen that causes life-threatening invasive infections such as streptococcal toxic shock syndrome. Recent epidemiological studies reveal that invasive SDSE infections have been increasing in Asia, Europe, and the United States. Almost all SDSE carry Lancefield group G or C antigen. We have determined the complete genome sequence of a human group C SDSE 167 strain. A comparison of its sequence with that of four SDSE strains, three in Lancefield group G and one in Lancefield group A, showed approximately 90% coverage. Most regions showing little or no homology were located in the prophages. There was no evidence of massive rearrangement in the genome of SDSE 167. Bayesian phylogeny using entire genome sequences showed that the most recent common ancestor of the five SDSE strains appeared 446 years ago. Interestingly, we found that SDSE 167 harbors sugar metabolizing enzymes in a unique region and streptodornase in the phage region, which presumably contribute to the degradation of host tissues and the prompted covRS mutation, respectively. A comparison of these five SDSE strains, which differ in Lancefield group antigens, revealed a gene cluster presumably responsible for the synthesis of the antigenic determinant. These results may provide the basis for molecular epidemiological research of SDSE.
Collapse
|