1
|
Comparative Genomics of Atypical Enteropathogenic Escherichia coli from Kittens and Children Identifies Bacterial Factors Associated with Virulence in Kittens. Infect Immun 2021; 89:IAI.00619-20. [PMID: 33257534 DOI: 10.1128/iai.00619-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Typical enteropathogenic Escherichia coli (tEPEC) is a leading cause of diarrhea and associated death in children worldwide. Atypical EPEC (aEPEC) lacks the plasmid encoding bundle-forming pili and is considered less virulent, but the molecular mechanism of virulence is poorly understood. We recently identified kittens as a host for aEPEC where intestinal epithelial colonization was associated with diarrheal disease and death. The purposes of this study were to (i) determine the genomic similarity between kitten aEPEC and human aEPEC isolates and (ii) identify genotypic or phenotypic traits associated with virulence in kitten aEPEC. We observed no differences between kitten and human aEPEC in core genome content or gene cluster sequence identities, and no distinguishing genomic content was observed between aEPEC isolates from kittens with nonclinical colonization (NC) versus those with lethal infection (LI). Variation in adherence patterns and ability to aggregate actin in cultured cells mirrored descriptions of human aEPEC. The aEPEC isolated from kittens with LI were significantly more motile than isolates from kittens with NC. Kittens may serve as a reservoir for aEPEC that is indistinguishable from human aEPEC isolates and may provide a needed comparative animal model for the study of aEPEC pathogenesis. Motility seems to be an important factor in pathogenesis of LI associated with aEPEC in kittens.
Collapse
|
2
|
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 2021; 246:126719. [PMID: 33582609 DOI: 10.1016/j.micres.2021.126719] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex "molecular syringe" able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair their functions and subsequently improve patient outcomes. This review aims to summarise the most relevant features of the P. aeruginosa T3SS.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru.
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Panamericana Sur, Km 19, Lima, Peru.
| |
Collapse
|
3
|
Association of Atypical Enteropathogenic Escherichia coli with Diarrhea and Related Mortality in Kittens. J Clin Microbiol 2017; 55:2719-2735. [PMID: 28659315 DOI: 10.1128/jcm.00403-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Diarrhea is responsible for the death of approximately 900,000 children per year worldwide. In children, typical enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea and is associated with a higher hazard of death. Typical EPEC infection is rare in animals and poorly reproduced in experimental animal models. In contrast, atypical EPEC (aEPEC) infection is common in both children and animals, but its role in diarrhea is uncertain. Mortality in kittens is often attributed to diarrhea, and we previously identified enteroadherent EPEC in the intestines of deceased kittens. The purpose of this study was to determine the prevalence and type of EPEC in kittens and whether infection was associated with diarrhea, diarrhea-related mortality, gastrointestinal pathology, or other risk factors. Kittens with and without diarrhea were obtained from two shelter facilities and determined to shed atypical EPEC at a culture-based prevalence of 18%. In contrast, quantitative PCR detected the presence of the gene for intimin (eae) in feces from 42% of kittens. aEPEC was isolated from kittens with and without diarrhea. However, kittens with diarrhea harbored significantly larger quantities of aEPEC than kittens without diarrhea. Kittens with aEPEC had a significantly greater severity of small intestinal and colonic lesions and were significantly more likely to have required subcutaneous fluid administration. These findings identify aEPEC to be prevalent in kittens and a significant primary or contributing cause of intestinal inflammation, diarrhea, dehydration, and associated mortality in kittens.
Collapse
|
4
|
Caetano BA, Rocha LB, Carvalho E, Piazza RMF, Luz D. Immunogenic Domains and Secondary Structure of Escherichia coli Recombinant Secreted Protein Escherichia coli-Secreted Protein B. Front Immunol 2017; 8:477. [PMID: 28484467 PMCID: PMC5402224 DOI: 10.3389/fimmu.2017.00477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/05/2017] [Indexed: 11/24/2022] Open
Abstract
Several pathogenic bacteria are able to induce the attaching and effacing (A/E) lesion. The A/E lesion is caused by effector proteins, such as Escherichia coli-secreted protein B (EspB), responsible together with Escherichia coli-secreted protein D for forming a pore structure on the host cell, which allows the translocation of effector proteins. Different variants of this protein can be found in E. coli strains, and during natural infection or when this protein is injected, this leads to variant-specific production of antibodies, which may not be able to recognize other variants of this bacterial protein. Herein, we describe the production of a hybrid recombinant EspB toxin that comprises all known variants of this protein. This recombinant protein could be useful as an antigen for the production of antibodies with broad-range detection of EspB-bearing bacteria, or as an antigen that could be used in vaccine formulation to generate antibodies against different EspB variants, thereby increasing immunization potential. In addition, the recombinant protein allowed us to analyze its secondary structure, to propose the immunogenic regions of EspB variants, and also to characterize anti-EspB antibodies. Our results suggest that this hybrid protein or a protein composed of the conserved immunogenic regions could be used for a variety of clinical applications.
Collapse
Affiliation(s)
- Bruna Alves Caetano
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Ingle DJ, Tauschek M, Edwards DJ, Hocking DM, Pickard DJ, Azzopardi KI, Amarasena T, Bennett-Wood V, Pearson JS, Tamboura B, Antonio M, Ochieng JB, Oundo J, Mandomando I, Qureshi S, Ramamurthy T, Hossain A, Kotloff KL, Nataro JP, Dougan G, Levine MM, Robins-Browne RM, Holt KE. Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants. Nat Microbiol 2016; 1:15010. [PMID: 27571974 DOI: 10.1038/nmicrobiol.2015.10] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is an umbrella term given to E. coli that possess a type III secretion system encoded in the locus of enterocyte effacement (LEE), but lack the virulence factors (stx, bfpA) that characterize enterohaemorrhagic E. coli and typical EPEC, respectively. The burden of disease caused by aEPEC has recently increased in industrialized and developing nations, yet the population structure and virulence profile of this emerging pathogen are poorly understood. Here, we generated whole-genome sequences of 185 aEPEC isolates collected during the Global Enteric Multicenter Study from seven study sites in Asia and Africa, and compared them with publicly available E. coli genomes. Phylogenomic analysis revealed ten distinct widely distributed aEPEC clones. Analysis of genetic variation in the LEE pathogenicity island identified 30 distinct LEE subtypes divided into three major lineages. Each LEE lineage demonstrated a preferred chromosomal insertion site and different complements of non-LEE encoded effector genes, indicating distinct patterns of evolution of these lineages. This study provides the first detailed genomic framework for aEPEC in the context of the EPEC pathotype and will facilitate further studies into the epidemiology and pathogenicity of EPEC by enabling the detection and tracking of specific clones and LEE variants.
Collapse
Affiliation(s)
- Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.,Centre for Systems Genomics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - David J Edwards
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.,Centre for Systems Genomics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dianna M Hocking
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Derek J Pickard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kristy I Azzopardi
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Jaclyn S Pearson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Boubou Tamboura
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - Martin Antonio
- Medical Research Council Unit (United Kingdom), Fajara, The Gambia
| | - John B Ochieng
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Joseph Oundo
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça, (CISM), CP 1929, Maputo, Mozambique.,Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Shahida Qureshi
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi 74800, Pakistan
| | | | - Anowar Hossain
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Karen L Kotloff
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.,Murdoch Childrens Research Institute, Royal Children's Hospital, Victoria 3052, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.,Centre for Systems Genomics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Enteropathogens associated with acute diarrhea in children from households with high socioeconomic level in uruguay. Int J Microbiol 2015; 2015:592953. [PMID: 25861274 PMCID: PMC4377524 DOI: 10.1155/2015/592953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 01/11/2023] Open
Abstract
Infectious diarrhea, a common disease of children, deserves permanent monitoring in all social groups. To know the etiology and clinical manifestations of acute diarrhea in children up to 5 years of age from high socioeconomic level households, we conducted a descriptive, microbiological, and clinical study.
Stools from 59 children with acute community-acquired diarrhea were examined, and their parents were interviewed concerning symptoms and signs. Rotavirus, adenovirus, and norovirus were detected by commercially available qualitative immunochromatographic lateral flow rapid tests. Salmonella, Campylobacter, Yersinia, and Shigella were investigated by standard bacteriological methods and diarrheagenic E. coli by PCR assays. We identified a potential enteric pathogen in 30 children. The most frequent causes of diarrhea were enteropathogenic E. coli (EPEC), viruses, Campylobacter, Salmonella, and Shiga-toxin-producing E. coli (STEC). Only 2 patients showed mixed infections. Our data suggest that children with viral or Campylobacter diarrhea were taken to the hospital earlier than those infected with EPEC. One child infected with STEC O26 developed “complete” HUS.
The microbiological results highlight the importance of zoonotic bacteria such as atypical EPEC, Campylobacter, STEC, and Salmonella as pathogens associated with acute diarrhea in these children. The findings also reinforce our previous communications about the regional importance of non-O157 STEC strains in severe infant food-borne diseases.
Collapse
|
7
|
Benevides-Matos N, Pieri FA, Penatti M, Orlandi PP. Adherence and virulence genes of Escherichia coli from children diarrhoea in the Brazilian Amazon. Braz J Microbiol 2015. [PMID: 26221098 PMCID: PMC4512055 DOI: 10.1590/s1517-838246120130917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bacterial pathogen most commonly associated with endemic forms of childhood diarrhoea is Escherichia coli
. Studies of epidemiological characteristics of HEp-2 cell-adherent E. coli
in diarrhoeal disease are required, particularly in developing countries. The aim of this study was evaluate the presence and significance of adherent Escherichia coli
from diarrhoeal disease in children. The prevalence of LA, AA, and DA adherence patterns were determined in HEp-2 cells, the presence of virulence genes and the presence of the O serogroups in samples obtained from 470 children with acute diarrhoea and 407 controls in Porto Velho, Rondônia, Brazil. E. coli
isolates were identified by PCR specific for groups of adherent E. coli
. Out of 1,156 isolates obtained, 128 (11.0%) were positive for eae
genes corresponding to EPEC, however only 38 (29.6%) of these amplified bfpA
gene
.
EAEC were isolated from 164 (14.1%) samples; of those 41(25%), 32 (19%) and 16 (9.7%) amplified eagg
, aggA
or aafA
genes, respectively and aggA was significantly associated with diarrhoea (
P
= 0.00006). DAEC identified by their adhesion pattern and there were few isolates. In conclusion, EAEC was the main cause of diarrhoea in children, especially when the aggA
gene was present, followed by EPEC and with a negligible presence of DAEC.
Collapse
Affiliation(s)
- Najla Benevides-Matos
- Instituto de Pesquisas em Patologias Tropicais, Fundação Oswaldo Cruz, Porto Velho, RO, Brazil
| | - Fabio A Pieri
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, AM, Brazil
| | - Marilene Penatti
- Hospital Infantil Cosme e Damião, Secretaria de Estado da Saúde, Porto Velho, RO, Brazil
| | - Patrícia P Orlandi
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, AM, Brazil
| |
Collapse
|
8
|
Diarrheagenic Escherichia coli phylogroups are associated with antibiotic resistance and duration of diarrheal episode. ScientificWorldJournal 2015; 2015:610403. [PMID: 25811044 PMCID: PMC4355820 DOI: 10.1155/2015/610403] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 12/19/2022] Open
Abstract
Conventionally, in Escherichia coli, phylogenetic groups A and B1 are associated with commensal strains while B2 and D are associated with extraintestinal strains. The aim of this study was to evaluate diarrheagenic (DEC) and commensal E. coli phylogeny and its association with antibiotic resistance and clinical characteristics of the diarrheal episode. Phylogenetic groups and antibiotic resistance of 369 E. coli strains (commensal strains and DEC from children with or without diarrhea) isolated from Peruvian children <1 year of age were determined by a Clermont triplex PCR and Kirby-Bauer method, respectively. The distribution of the 369 E. coli strains among the 4 phylogenetic groups was A (40%), D (31%), B1 (21%), and B2 (8%). DEC-control strains were more associated with group A while DEC-diarrhea strains were more associated with group D (P < 0.05). There was a tendency (P = 0.06) for higher proportion of persistent diarrhea (≥14 days) among severe groups (B2 and D) in comparison with nonsevere groups (A and B1). Strains belonging to group D presented significantly higher percentages of multidrug resistance than the rest of the groups (P > 0.01). In summary, DEC-diarrhea strains were more associated with group D than strains from healthy controls.
Collapse
|
9
|
Dutta S, Pazhani GP, Nataro JP, Ramamurthy T. Heterogenic virulence in a diarrheagenic Escherichia coli: evidence for an EPEC expressing heat-labile toxin of ETEC. Int J Med Microbiol 2014; 305:47-54. [PMID: 25465159 DOI: 10.1016/j.ijmm.2014.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/12/2014] [Accepted: 10/20/2014] [Indexed: 01/29/2023] Open
Abstract
We have encountered an Escherichia coli strain isolated from a child with acute diarrhea. This strain harbored eae and elt genes encoding for E. coli attaching and effacing property and heat-labile enterotoxin of EPEC and ETEC, respectively. Due to the presence of these distinct virulence factors, we named this uncommon strain as EPEC/ETEC hybrid. The elt gene was identified in a conjugally transferable plasmid of the EPEC/ETEC hybrid. In addition, several virulence genes in the locus of enterocyte effacement have been identified, which confirms that the EPEC/ETEC has an EPEC genetic background. The hybrid nature of this strain was further confirmed by using tissue culture assays. In the multi locus sequence typing (MLST) analysis, the EPEC/ETEC belonged to the sequence type ST328 and was belonging to ST278 Cplx. Sequence analysis of the plasmid DNA revealed presence of six large contigs with several insertion sequences. A phage integrase gene and the prophages of gp48 and gp49 have been found in the upstream of eltAB. In the downstream of elt, an urovirulence loci adhesion encoding (pap) cluster containing papG, and papC were also identified. Similar to other reports, we have identified a heterogenic virulence in a diarrheagenic E. coli but with different combination of genes.
Collapse
Affiliation(s)
- Sanjucta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Gururaja P Pazhani
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
10
|
Mohammadzadeh M, Oloomi M, Bouzari S. Genetic evaluation of Locus of enterocyte effacement pathogenicity island (LEE) in Enteropathogenic Escherichia coli isolates (EPEC). IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:345-9. [PMID: 25848503 PMCID: PMC4385159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Enteropathogenic Escherichia coli (EPEC) divided into two groups typical and atypical (aspect). The main virulence genes are located in a pathogenicity island called LEE (Locus of Enterocyte Effacement). LEE frequently inserted in tRNA genes of selC, pheU and pheV in the bacterial chromosome. tEPEC and aEPEC strains have some differences in their pathogenicity. The purpose of this was to investigate the possible differences between tEPEC and aEPEC strains according to the virulence genes encoding by LEE and their relation to insertion sites. MATERIALS AND METHODS In this study 130 E. coli isolates confirmed by biochemical analysis from diarrheal patients, were evaluated for EPEC pathotype by PCR. All EPEC strains tested for presence of some LEE encoded virulence genes and sites of LEE insertion by PCR method. RESULTS Among 50 strains of EPEC 28 (56%) and 22 (44%) were typical and atypical strains respectively. 19 strains (30%) showed insertion in selC, 7 (14%) in pheU, 4 (8%) in pheV, 8 (16%) in pheU and pheV, 1 (2%) in selC and pheU, 6 (12%) in pheV, pheU and selC and 5 (10%) had no insertion in these sites. Moreover, spa (n = 8, 16%), espB (n = 16, 32%), espD (n = 18, 36%), espF (n = 8, 16%), espG (n = 13, 26%), espH (n = 12, 24%), map (n = 11, 32%) and tir (n = 4, 8%) were present among the strains. CONCLUSION Results showed that most of the virulence genes are present in tEPEC isolates. However, aEPEC isolates may acquire other virulence factors. The majority of tEPEC strains showed insertion at selC and aEPEC strains in pheV and pheU.
Collapse
Affiliation(s)
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran
| | - Saeid Bouzari
- Corresponding author: Saeid Bouzari Ph.D, Address: Department of Molecular biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, Iran. Tel: +98-21-66953311, Fax: +98-21-66492619,
| |
Collapse
|