1
|
Yang C, Rehman MA, Yin X, Carrillo CD, Wang QI, Yang C, Gong J, Diarra MS. Antimicrobial Resistance Phenotypes and Genotypes of Escherichia coli Isolates from Broiler Chickens Fed Encapsulated Cinnamaldehyde and Citral. J Food Prot 2021; 84:1385-1399. [PMID: 33770170 DOI: 10.4315/jfp-21-033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
ABSTRACT This study was conducted to investigate the effects of in-feed encapsulated cinnamaldehyde (CIN) and citral (CIT) alone or in combination on antimicrobial resistance (AMR) phenotypes and genotypes of Escherichia coli isolates recovered from feces of 6-, 16-, 23-, and 27-day-old broiler chickens. The five dietary treatments including the basal diet (negative control [NC]) and the basal diet supplemented with 55 ppm of bacitracin (BAC), 100 ppm of encapsulated CIN, 100 ppm of encapsulated CIT, or 100 ppm each of encapsulated CIN and encapsulated CIT (CIN+CIT). Antimicrobial susceptibility testing of 240 E. coli isolates revealed that the most common resistance was to β-lactams, aminoglycosides, sulfonamides, and tetracycline; however, the prevalence of AMR decreased (P < 0.05) as birds aged. The prevalence of resistance to amoxicillin-clavulanic acid, ceftiofur, ceftriaxone, cefoxitin, gentamicin, and sulfonamide was lower (P < 0.05) in isolates from the CIN or CIN+CIT groups than in isolates from the NC or BAC groups. Whole genome sequencing of 227 of the 240 isolates revealed 26 AMR genes and 19 plasmids, but the prevalence of some AMR genes and the number of plasmids were lower (P < 0.05) in E. coli isolated from CIN or CIN+CIT birds than in isolates from NC or BAC birds. The most prevalent resistance genes were tet(A) (108 isolates), aac(3)-VIa (91 isolates), aadA1 (86 isolates), blaCMY-2 (78 isolates), sul1 (77 isolates), aph(3)-Ib (58 isolates), aph(6)-Id (58 isolates), and sul2 (24 isolates). The numbers of most virulence genes carried by isolates increased (P < 0.05) in chickens from 6 to 27 days of age. The prevalence of E. coli O21:H16 isolates was lower (P < 0.05) in CIN and CIN+CIT, and the colibacillosis-associated multilocus sequence type (ST117) was most prevalent in isolates from 23-day-old chickens. A phylogenetic tree of whole genome sequences revealed a close relationship between 25 of the 227 isolates and human or broiler extraintestinal pathogenic E. coli strains. These findings indicate that AMR and virulence genotypes of E. coli could be modulated by providing encapsulated CIN or CIN+CIT feed supplements, but further investigation is needed to determine the mechanisms of the effects of these supplements. HIGHLIGHTS
Collapse
Affiliation(s)
- Chongwu Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Catherine D Carrillo
- Canadian Food Inspection Agency, Ottawa Laboratory (Carling), Ottawa, Ontario, Canada K1A 0Z2
| | - Q I Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| |
Collapse
|
2
|
Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. J Mol Biol 2021; 433:167005. [PMID: 33891902 DOI: 10.1016/j.jmb.2021.167005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases present a major threat to public health globally. Pathogens can acquire resistance to anti-infectious agents via several means including transporter-mediated efflux. Typically, multidrug transporters feature spacious, dynamic, and chemically malleable binding sites to aid in the recognition and transport of chemically diverse substrates across cell membranes. Here, we discuss recent structural investigations of multidrug transporters involved in resistance to infectious diseases that belong to the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the drug/metabolite transporter (DMT) superfamily, the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance (SMR) family, and the resistance-nodulation-division (RND) superfamily. These structural insights provide invaluable information for understanding and combatting multidrug resistance.
Collapse
|
3
|
Yardeni EH, Zomot E, Bibi E. The fascinating but mysterious mechanistic aspects of multidrug transport by MdfA from Escherichia coli. Res Microbiol 2017; 169:455-460. [PMID: 28951231 DOI: 10.1016/j.resmic.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
MdfA is an interesting member of a large group of secondary multidrug (Mdr) transporters. Through genetic, biochemical and biophysical studies of MdfA, many challenging aspects of the multidrug transport phenomenon have been addressed. This includes its ability to interact with chemically unrelated drugs and how it utilizes energy to drive efflux of compounds that are not only structurally, but also electrically, different. Admittedly, however, despite all efforts and a recent pioneering structural contribution, several important mechanistic issues of the promiscuous capabilities of MdfA still seek better molecular and dynamic understanding.
Collapse
Affiliation(s)
- Eliane H Yardeni
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elia Zomot
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eitan Bibi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
4
|
Meiresonne NY, van der Ploeg R, Hink MA, den Blaauwen T. Activity-Related Conformational Changes in d,d-Carboxypeptidases Revealed by In Vivo Periplasmic Förster Resonance Energy Transfer Assay in Escherichia coli. mBio 2017; 8:e01089-17. [PMID: 28900026 PMCID: PMC5596342 DOI: 10.1128/mbio.01089-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022] Open
Abstract
One of the mechanisms of β-lactam antibiotic resistance requires the activity of d,d-carboxypeptidases (d,d-CPases) involved in peptidoglycan (PG) synthesis, making them putative targets for new antibiotic development. The activity of PG-synthesizing enzymes is often correlated with their association with other proteins. The PG layer is maintained in the periplasm between the two membranes of the Gram-negative cell envelope. Because no methods existed to detect in vivo interactions in this compartment, we have developed and validated a Förster resonance energy transfer assay. Using the fluorescent-protein donor-acceptor pair mNeonGreen-mCherry, periplasmic protein interactions were detected in fixed and in living bacteria, in single samples or in plate reader 96-well format. We show that the d,d-CPases PBP5, PBP6a, and PBP6b of Escherichia coli change dimer conformation between resting and active states. Complementation studies and changes in localization suggest that these d,d-CPases are not redundant but that their balanced activity is required for robust PG synthesis.IMPORTANCE The periplasmic space between the outer and the inner membrane of Gram-negative bacteria contains many essential regulatory, transport, and cell wall-synthesizing and -hydrolyzing proteins. To date, no assay is available to determine protein interactions in this compartment. We have developed a periplasmic protein interaction assay for living and fixed bacteria in single samples or 96-well-plate format. Using this assay, we were able to demonstrate conformation changes related to the activity of proteins that could not have been detected by any other living-cell method available. The assay uniquely expands our toolbox for antibiotic screening and mode-of-action studies.
Collapse
Affiliation(s)
- Nils Y Meiresonne
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - René van der Ploeg
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark A Hink
- Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Heng J, Zhao Y, Liu M, Liu Y, Fan J, Wang X, Zhao Y, Zhang XC. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res 2015; 25:1060-73. [PMID: 26238402 DOI: 10.1038/cr.2015.94] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/02/2015] [Accepted: 05/07/2015] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters.
Collapse
Affiliation(s)
- Jie Heng
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ming Liu
- College of Biotechnology, Tianjin University of Science and Technology, 29 13th Street, TEDA, Tianjin 300457, China
| | - Yue Liu
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Junping Fan
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xianping Wang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Yongfang Zhao
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xuejun C Zhang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| |
Collapse
|