1
|
Zhang D, Wang W, Song C, Huang T, Chen H, Liu Z, Zhou Y, Wang H. Comparative genomic study of non-typeable Haemophilus influenzae in children with pneumonia and healthy controls. iScience 2024; 27:111330. [PMID: 39650731 PMCID: PMC11625288 DOI: 10.1016/j.isci.2024.111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/24/2024] [Accepted: 10/10/2024] [Indexed: 12/11/2024] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a common pathogen causing respiratory infections, including pneumonia in children, and can also be found in the upper respiratory tracts of asymptomatic individuals. This study examines genomic variations between NTHi strains from healthy children and those from children with acute or chronic community-acquired pneumonia (CAP). Using bacterial genome-wide association studies (bGWAS), we compared these strains to identify key differences. Our analysis revealed that approximately 32% of genes exhibit variations between commensal and pathogenic states. Notably, we identified changes in peptidoglycan biosynthesis pathways and significant virulence factors associated with pneumonia. Furthermore, we observed a significant difference in β-lactam resistance due to PBP3 mutations between the healthy and pneumonia groups, confirmed by the ampicillin susceptibility test and characterized by the mutation pattern D350N, S357N, S385T, L389F. These findings contribute valuable insights into the genomic basis of NTHi pathogenicity and may inform more targeted clinical diagnostics and treatments.
Collapse
Affiliation(s)
- Deming Zhang
- Shantou University Medical College, Shantou University, Shantou, Guangdong 515041, China
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
| | - Wenjian Wang
- Department of Shenzhen Clinical College of Pediatrics, Shantou University Medical College, Shantou University, Shantou, Guangdong 518038, China
| | - Chunli Song
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Tingting Huang
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Hongyu Chen
- Department of Shenzhen Clinical College of Pediatrics, Shantou University Medical College, Shantou University, Shantou, Guangdong 518038, China
| | - Zihao Liu
- Department of Shenzhen Clinical College of Pediatrics, Shantou University Medical College, Shantou University, Shantou, Guangdong 518038, China
| | - Yiwen Zhou
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Heping Wang
- Shantou University Medical College, Shantou University, Shantou, Guangdong 515041, China
- Department of Shenzhen Clinical College of Pediatrics, Shantou University Medical College, Shantou University, Shantou, Guangdong 518038, China
| |
Collapse
|
2
|
Hong Y, Wu Y, Xie Y, Ben L, Bu X, Pan X, Shao J, Dong Q, Qin X, Wang X. Effects of antibiotic-induced resistance on the growth, survival ability and virulence of Salmonella enterica. Food Microbiol 2023; 115:104331. [PMID: 37567636 DOI: 10.1016/j.fm.2023.104331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 08/13/2023]
Abstract
Salmonella enterica is an important foodborne pathogen that constitutes a major health hazard. The emergence and aggravation of antibiotic-resistant Salmonella has drawn attention widely around the world. Conducting a risk assessment of antibiotic-resistant foodborne pathogens throughout the food chain is a pressing requirement for ensuring food safety. The growth, survival capability, and virulence of antibiotic-resistant Salmonella represent crucial biological characteristics that play an important role in microbial risk assessment. In this study, eight antibiotic-sensitive S. enterica strains were induced by Ampicillin (Amp) and Ciprofloxacin (CIP), respectively, and AMP-resistant and CIP-resistant mutants were obtained. The growth characteristics under different temperatures (25, 30, 35 °C), viability after exposure to heat (55, 57.5, 60 °C) and acid (HCl, pH = 3.0), the virulence potential (adhesion and invasion to Caco-2 cells, biofilm formation and motility) and the lethality in a model species (Galleria mellonella) were evaluated and compared for S. enterica strains before and after antibiotic exposure. The induction by AMP and CIP are likely to promote cross-antibiotic resistance to their antibiotic classes, β-lactams and quinolones, as well as some compound antibiotics. It was observed that generally the antibiotic-induction-resistant strains showed decreased growth ability and lower heat resistance, although the differences were not significant at all the conditions tested. The AMP-resistant strains were significantly less acid resistance than the sensitive and the CIP-resistant ones, while exhibiting increased biofilm formation ability. In general, the antibiotic-induced resistance did not significantly affect the motility, adherence, or invasion ability of Caco-2 cells. However, CIP-resistant strains displayed lower lethality in G. mellonella infection, whereas AMP-resistant strains did not, and even two strains improved lethality. The study of the biological characteristics of antibiotic-resistant S. enterica is essential in better understanding the microbial risks to both the food chain and human health, thereby facilitating a more accurate risk assessment.
Collapse
Affiliation(s)
- Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yani Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leijie Ben
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiangfeng Bu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinye Pan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingdong Shao
- Technology Center of Zhangjiagang Customs, Suzhou, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Ekinci E, Willen L, Rodriguez Ruiz JP, Maertens K, Van Heirstraeten L, Serrano G, Wautier M, Deplano A, Goossens H, Van Damme P, Beutels P, Malhotra-Kumar S, Martiny D, Theeten H. Haemophilus influenzae carriage and antibiotic resistance profile in Belgian infants over a three-year period (2016-2018). Front Microbiol 2023; 14:1160073. [PMID: 37168112 PMCID: PMC10164969 DOI: 10.3389/fmicb.2023.1160073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Background Non-typeable Haemophilus influenzae has become increasingly important as a causative agent of invasive diseases following vaccination against H. influenzae type b. The emergence of antibiotic resistance underscores the necessity to investigate typeable non-b carriage and non-typeable H. influenzae (NTHi) in children. Methods Nasopharyngeal swab samples were taken over a three-year period (2016-2018) from 336 children (6-30 months of age) attending daycare centers (DCCs) in Belgium, and from 218 children with acute otitis media (AOM). Biotype, serotype, and antibiotic resistance of H. influenzae strains were determined phenotypically. Mutations in the ftsI gene were explored in 129 strains that were resistant or had reduced susceptibility to beta-lactam antibiotics. Results were compared with data obtained during overlapping time periods from 94 children experiencing invasive disease. Results Overall, NTHi was most frequently present in both carriage (DCC, AOM) and invasive group. This was followed by serotype "f" (2.2%) and "e" (1.4%) in carriage, and "b" (16.0%), "f" (11.7%), and "a" (4.3%) in invasive strains. Biotype II was most prevalent in all studied groups, followed by biotype III in carriage and I in invasive strains. Strains from both groups showed highest resistance to ampicillin (26.7% in carriage vs. 18.1% in invasive group). A higher frequency of ftsI mutations were found in the AOM group than the DCC group (21.6 vs. 14.9% - p = 0.056). Even more so, the proportion of biotype III strains that carried a ftsI mutation was higher in AOM compared to DCC (50.0 vs. 26.3% - p < 0.01) and invasive group. Conclusion In both groups, NTHi was most frequently circulating, while specific encapsulated serotypes for carriage and invasive group were found. Biotypes I, II and III were more frequently present in the carriage and invasive group. The carriage group had a higher resistance-frequency to the analyzed antibiotics than the invasive group. Interestingly, a higher degree of ftsI mutations was found in children with AOM compared to DCC and invasive group. This data helps understanding the H. influenzae carriage in Belgian children, as such information is scarce.
Collapse
Affiliation(s)
- Esra Ekinci
- Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
- *Correspondence: Esra Ekinci,
| | - Laura Willen
- Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
| | | | - Kirsten Maertens
- Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
| | | | - Gabriela Serrano
- National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
| | - Magali Wautier
- National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
| | - Ariane Deplano
- National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Belgium
| | | | - Delphine Martiny
- National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
| | - Heidi Theeten
- Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Singh NK, Kunde DA, Tristram SG. Inability of Haemophilus haemolyticus to invade respiratory epithelial cells in vitro. J Med Microbiol 2016; 65:1341-1342. [PMID: 27624822 DOI: 10.1099/jmm.0.000349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Neeraj Kumar Singh
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dale A Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Stephen G Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
6
|
Singh NK, Kunde DA, Tristram SG. Effect of epithelial cell type on in vitro invasion of non-typeable Haemophilus influenzae. J Microbiol Methods 2016; 129:66-69. [PMID: 27473508 DOI: 10.1016/j.mimet.2016.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/28/2022]
Abstract
Non-typeable Haemophilus influenzae (NTHi) have been shown to have variable ability for in vitro invasion with a range of epithelial cells, and increased invasion of BEAS-2B cells has been associated with altered penicillin binding protein3 (PBP3), which is concerning as these strains are increasing worldwide. The aim of the study was to investigate the effect of respiratory cell type and the presence of altered PBP3 on the in vitro invasion of NTHi. A collection of 16 clinical NTHi isolates was established, 7 had normal PBP3, and 9 had altered PBP3 as defined by an N526K substitution. The isolates were tested for invasion of BEAS-2B, NHBE, A549 and NCI-H292 respiratory epithelial cells in vitro using a gentamicin survival assay, with invasion measured as the percentage of intracellular organisms relative to the initial inoculum. The overall median invasion for the 16 NTHi isolates for cell types BEAS-2B, NHBE, A549 and NCI-H292 cells were 3.17, 2.31, 0.11 and 1.52 respectively. The differences were statistically significant for BEAS-2B compared to A549 (P=0.015) and A549 compared to NCI-H292 (P=0.015), and there were also very marked differences in invasion for some individual isolates depending on the cell type used. There was a consistent bias for invasion of isolates with normal versus abnormal PBP3: and this was statistically significant for BEAS-2B (0.07 to 9.90, P=0.031) and A549 cells (0.02 to 1.68, P=0.037). These results show that NTHi invasion of respiratory epithelial cells in vitro is both strain dependant and influenced significantly by the cell line used, and that the association between altered PBP3 and increased invasion is conserved across multiple cell lines.
Collapse
Affiliation(s)
- Neeraj Kumar Singh
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dale A Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Stephen G Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.
| |
Collapse
|
7
|
Andersson M, Resman F, Eitrem R, Drobni P, Riesbeck K, Kahlmeter G, Sundqvist M. Outbreak of a beta-lactam resistant non-typeable Haemophilus influenzae sequence type 14 associated with severe clinical outcomes. BMC Infect Dis 2015; 15:581. [PMID: 26700635 PMCID: PMC4690285 DOI: 10.1186/s12879-015-1319-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background During October 2011 several residents and staff members at a long-term care facility (LTCF) for elderly fell ill with respiratory symptoms. Several of the residents required hospitalization and one died. Non-typeable Haemophilus influenzae (NTHi) was identified as the causative pathogen. Methods A descriptive analysis of the outbreak and countermeasures was performed. For each identified bacterial isolate implied in the outbreak, standard laboratory resistance testing was performed, as well as molecular typing and phylogenetic analysis. Results The identified H. influenzae was beta-lactamase negative but had strikingly high MIC-values of ampicillin, cefuroxime and cefotaxime. All isolates displayed the same mutation in the ftsI gene encoding penicillin-binding protein (PBP) 3, and all but one were identified as sequence type 14 by Multilocus Sequence Typing (MLST). In total 15 individuals in connection to the LTCF; 8 residents, 6 staff members and one partner to a staff member were colonized with the strain. Conclusion This report illustrates the existence of non-typeable H. influenzae with high virulence, and furthermore emphasizes the importance of continuous surveillance of possible outbreaks in health care facilities and prompt measures when outbreaks occur.
Collapse
Affiliation(s)
- Madelen Andersson
- Department of Infectious Diseases, Blekinge Hospital, Karlskrona, Sweden
| | - Fredrik Resman
- Department of Translational Medicine, Medical Microbiology, Lund University, Malmö, Sweden.
| | - Rickard Eitrem
- Department of Communicable Disease Control, County Blekinge, Karlskrona, Sweden
| | - Peter Drobni
- Department of Clinical Microbiology, County Kronoberg, Växjö/Karlskrona, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Medical Microbiology, Lund University, Malmö, Sweden
| | - Gunnar Kahlmeter
- Department of Clinical Microbiology, County Kronoberg, Växjö/Karlskrona, Sweden.,Department of Medical Sciences, Division of Clinical Bacteriology, Uppsala University, Uppsala, Sweden
| | - Martin Sundqvist
- Department of Clinical Microbiology, County Kronoberg, Växjö/Karlskrona, Sweden.,Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|