1
|
Shandilya UK, Sharma A, Mallikarjunappa S, Guo J, Mao Y, Meade KG, Karrow NA. CRISPR-Cas9-mediated knockout of TLR4 modulates Mycobacterium avium ssp. paratuberculosis cell lysate-induced inflammation in bovine mammary epithelial cells. J Dairy Sci 2021; 104:11135-11146. [PMID: 34253365 DOI: 10.3168/jds.2021-20305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognition receptor involved in the recognition of microbial pathogens and host alarmins. Ligation to TLR4 initiates a signaling cascade that leads to inflammation. Polymorphisms in bovine TLR4 have been associated with Mycobacterium avium ssp. paratuberculosis (MAP) susceptibility and resistance, the cause of Johne's disease, and milk somatic cell score, a biomarker of mastitis. Although the contribution of TLR4 to recognition of bacterial lipopolysaccharide (LPS) has been well characterized, its role in MAP recognition is less certain. Clustered regularly interspaced short palindromic repeats-Cas9 mediated gene editing was performed to generate TLR4 knockout (KO) mammary epithelial cells to determine if TLR4 expression is involved in the initiation of the host inflammatory response to MAP cell lysate (5 and 10 µg/mL) and Escherichia coli LPS (5 µg/mL). The absence of TLR4 in KO cells resulted in enhanced expression of key inflammatory genes (TNFA and IL6), anti-inflammatory genes (IL10 and SOCS3), and supernatant cytokine and chemokine levels (TNF-α, IL-6, IL-10, CCL3) in response to the MAP cell lysate (10 µg/mL). However, in response to LPS, the KO cells showed reduced expression of key inflammatory genes (TNFA, IL1A, IL1B, and IL6) and supernatant cytokine levels (TNF-α, IL-6, CCL2, IL-8) as compared with unedited cells. Overall, these results confirm that TLR4 is essential for eliciting inflammation in response to LPS; however, exacerbated gene and protein expression in TLR4 KO cells in response to MAP cell lysate suggests a different mechanism of infection and host response for MAP, at least in terms of how it interacts with TLR4. These novel findings show potential divergent roles for TLR4 in mycobacterial infections, and this may have important consequences for the therapeutic control of inflammation in cattle.
Collapse
Affiliation(s)
- Umesh K Shandilya
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - A Sharma
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - S Mallikarjunappa
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - J Guo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Y Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - K G Meade
- Animal and Bioscience Research Department, Teagasc, Grange, Co. Meath, Ireland, C15 PW93; School of Agriculture and Food Science, University College Dublin, Ireland, D04 V1W8
| | - N A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada.
| |
Collapse
|
2
|
Effect of the deletion of lprG and p55 genes in the K10 strain of Mycobacterium avium subspecies paratuberculosis. Res Vet Sci 2021; 138:1-10. [PMID: 34087563 DOI: 10.1016/j.rvsc.2021.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
The lprG-p55 operon of Mycobacterium tuberculosis, M. bovis and M. avium strain D4ER has been identified as a virulence factor involved in the transport of toxic compounds. LprG is a lipoprotein that modulates the host immune response against mycobacteria, whereas P55 is an efflux pump that provides resistance to several drugs. In the present study we search for, and characterize, lprg and p55, putative virulence genes in Mycobacterium avium subsp. paratuberculosis (MAP) to generate a live-attenuated strain of MAP that may be useful in the future as live-attenuated vaccine. For this purpose, we generated and evaluated two mutants of MAP strain K10: one mutant lacking the lprG gene (ΔlprG) and the other lacking both genes lprG and p55 (ΔlprG-p55). None of the mutant strains showed altered susceptibility to first-line and second-line antituberculosis drugs or ethidium bromide, only the double mutant had two-fold increase in clarithromycin susceptibility compared with the wild-type strain. The deletion of lprG and of lprG-p55 reduced the replication of MAP in bovine macrophages; however, only the mutant in lprG-p55 grew faster in liquid media and showed reduced viability in macrophages and in a mouse model. Considering that the deletion of both genes lprG-p55, but not that of lprG alone, showed a reduced replication in vivo, we can speculate that p55 contributes to the survival of MAP in this animal model.
Collapse
|
3
|
Identification of sero-reactive antigens for the early diagnosis of Johne's disease in cattle. PLoS One 2017; 12:e0184373. [PMID: 28863177 PMCID: PMC5581170 DOI: 10.1371/journal.pone.0184373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic intestinal inflammatory disease of cattle and other ruminants. JD has a high herd prevalence and causes serious animal health problems and significant economic loss in domesticated ruminants throughout the world. Since serological detection of MAP infected animals during the early stages of infection remains challenging due to the low sensitivity of extant assays, we screened 180 well-characterized serum samples using a whole proteome microarray from Mycobacterium tuberculosis (MTB), a close relative of MAP. Based on extensive testing of serum and milk samples, fecal culture and qPCR for direct detection of MAP, the samples were previously assigned to one of 4 groups: negative low exposure (n = 30, NL); negative high exposure (n = 30, NH); fecal positive, ELISA negative (n = 60, F+E-); and fecal positive, ELISA positive (n = 60, F+E+). Of the 740 reactive proteins, several antigens were serologically recognized early but not late in infection, suggesting a complex and dynamic evolution of the MAP humoral immune response during disease progression. Ordinal logistic regression models identified a subset of 47 candidate proteins with significantly different normalized intensity values (p<0.05), including 12 in the NH and 23 in F+E- groups, suggesting potential utility for the early detection of MAP infected animals. Next, the diagnostic utility of four MAP orthologs (MAP1569, MAP2942c, MAP2609, and MAP1272c) was assessed and reveal moderate to high diagnostic sensitivities (range 48.3% to 76.7%) and specificity (range 96.7% to 100%), with a combined 88.3% sensitivity and 96.7% specificity. Taken together, the results of our analyses have identified several candidate MAP proteins of potential utility for the early detection of MAP infection, as well individual MAP proteins that may serve as the foundation for the next generation of well-defined serological diagnosis of JD in cattle.
Collapse
|
4
|
Goswami PP, Chand G, Prasad NS, Deb R, Basagoudanavar SH. Recombinant 20.8-kDa protein of Mycobacterium avium subsp. paratuberculosis-based sero-diagnosis of paratuberculosis. 3 Biotech 2017. [PMID: 28623492 DOI: 10.1007/s13205-017-0758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Johne's disease or paratuberculosis is a chronic infectious enteric disease of ruminants caused by the intracellular pathogen. The control of the Johne's disease is hampered by lack of specific diagnostic tests. In this study, we have cloned and expressed the N-terminal region of the locus tag Map 1637c encoding 20.8-kDa (r20.8) protein of Mycobacterium avium subsp. paratuberculosis. The recombinant protein r20.8 was expressed in high levels in Escherichia coli. The protein r20.8 was purified by single-step chromatography using Ni-NTA agarose. The protein r20.8 was reacted with anti-r20.8 antibodies as well as cattle sera infected with Map on Western blot. ELISA using well-characterized sera (both positive and negative; n = 60 each) Map-infected and non-infected cattle, respectively, yielded a sensitivity of 73.3% and a specificity of 98.3%. The 20.8 kDa protein expressed in the present study will prove useful as reagent in diagnostic test.
Collapse
Affiliation(s)
- P P Goswami
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, India.
| | - Gokul Chand
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - N S Prasad
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - R Deb
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - S H Basagoudanavar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| |
Collapse
|
5
|
Arrazuria R, Molina E, Garrido JM, Pérez V, Juste RA, Elguezabal N. Vaccination sequence effects on immunological response and tissue bacterial burden in paratuberculosis infection in a rabbit model. Vet Res 2016; 47:77. [PMID: 27496043 PMCID: PMC4975891 DOI: 10.1186/s13567-016-0360-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023] Open
Abstract
Paratuberculosis (PTB), a chronic granulomatous enteritis produced by Mycobacterium avium subspecies paratuberculosis (MAP), is considered as one of the diseases with the highest economic impact in the ruminant industry. Vaccination against MAP is recommended during the first months after birth on the basis that protection would be conferred before the first contact with mycobacteria. However, little is known about the therapeutic effect of MAP vaccination in controlled experimental conditions. The current study was designed to evaluate the efficacy of vaccination before and after challenge with MAP in a rabbit infection model. The rabbits were divided into four groups: non-infected control (NIC, n = 4), infected control challenged with MAP (IC, n = 5), vaccinated and challenged 1 month after with MAP (VSI, n = 5) and challenged with MAP and vaccinated 2 months later (IVS, n = 5). The results from this study show a quick increase in IFN-γ release upon stimulation with bovine, avian and johnin PPD in animals vaccinated before MAP challenge. All vaccinated animals show an increased humoral response as seen by western blot and ELISA. The final bacteriology index (considering tissue culture and qPCR) shows that the IC group was the most affected. Vaccination after infection (IVS) produced the lowest bacteriology index showing significant differences with the IC group (p = 0.034). In conclusion, vaccination against MAP shows positive effects in a rabbit model. However, vaccination after infection shows a slightly stronger protective effect compared to vaccination before infection, suggesting a therapeutic effect. This feature could be applied to previously infected adult animals under field conditions.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain
| | - Elena Molina
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain
| | - Joseba M Garrido
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain
| | - Valentín Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain.,Department of Agriculture of the Regional Government of the Principality of Asturias, SERIDA, Deva, Asturias, Spain
| | - Natalia Elguezabal
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
6
|
Chaubey KK, Gupta RD, Gupta S, Singh SV, Bhatia AK, Jayaraman S, Kumar N, Goel A, Rathore AS, Sahzad, Sohal JS, Stephen BJ, Singh M, Goyal M, Dhama K, Derakhshandeh A. Trends and advances in the diagnosis and control of paratuberculosis in domestic livestock. Vet Q 2016; 36:203-227. [PMID: 27356470 DOI: 10.1080/01652176.2016.1196508] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Paratuberculosis (pTB) is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP) in a wide variety of domestic and wild animals. Control of pTB is difficult due to the lack of sensitive, efficacious and cost-effective diagnostics and marker vaccines. Microscopy, culture, and PCR have been used for the screening of MAP infection in animals for quite a long time. Besides, giving variable sensitivity and specificity, these tests have not been considered ideal for large-scale screening of domestic livestock. Serological tests like ELISA easily detects anti-MAP antibodies. However, it cannot differentiate between the vaccinated and infected animals. Nanotechnology-based diagnostic tests are underway to improve the sensitivity and specificity. Newer generation diagnostic tests based on recombinant MAP secretory proteins would open new paradigm for the differentiation between infected and vaccinated animals and for early detection of the infection. Due to higher seroreactivity of secretory proteins vis-à-vis cellular proteins, the secretory proteins may be used as marker vaccine, which may aid in the control of pTB infection in animals. Secretory proteins can be potentially used to develop future diagnostics, surveillance and monitoring of the disease progression in animals and the marker vaccine for the control and eradication of pTB.
Collapse
Affiliation(s)
- Kundan Kumar Chaubey
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India.,b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Rinkoo Devi Gupta
- c Department of Life sciences and Biotechnology , South Asian University , New Delhi , India
| | - Saurabh Gupta
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India.,b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Shoor Vir Singh
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Ashok Kumar Bhatia
- b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Sujata Jayaraman
- d Amity Institutes of Microbial Technology , Amity University , Jaipur , India
| | - Naveen Kumar
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Anjana Goel
- b Department of Microbiology and Immunology , GLA University , Mathura , India
| | - Abhishek Singh Rathore
- c Department of Life sciences and Biotechnology , South Asian University , New Delhi , India
| | - Sahzad
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Jagdip Singh Sohal
- d Amity Institutes of Microbial Technology , Amity University , Jaipur , India
| | - Bjorn John Stephen
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Manju Singh
- a Microbiology Laboratory, Animal Health Division , Central Institute for Research on Goats , Mathura , India
| | - Manish Goyal
- e Division of Parasitology , Central Drug Research Institute , Lucknow , India
| | - Kuldeep Dhama
- f Pathology Division , Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Abdollah Derakhshandeh
- g Department of Pathobiology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| |
Collapse
|
7
|
Composition and Potency Characterization of Mycobacterium avium subsp. paratuberculosis Purified Protein Derivatives. PLoS One 2016; 11:e0154685. [PMID: 27136199 PMCID: PMC4852940 DOI: 10.1371/journal.pone.0154685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/14/2016] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) purified protein derivatives (PPDs) are immunologic reagents prepared from cultured filtrates of the type strain. Traditional production consists of floating culture incubation at 37°C, organism inactivation by autoclaving, coarse filtration, and protein precipitation. Three traditional production PPDs were used in this study including lot 9801, which served as a reference and has been used in the field for decades. Alternative production PPDs (0902A and 0902B), in which the autoclaving step was removed, were also analyzed in this study. SDS-PAGE analysis revealed protein smearing in traditional PPDs, but distinct bands were observed in the alternative PPD preparations. Antibody bound distinct protein bands in the alternative PPDs by immunoblot analysis, whereas an immunoreactive smear was observed with the traditional PPDs. Mass spectrometry identified 194 proteins among three PPD lots representing the two different production methods, ten of which were present in all PPDs examined. Selected proteins identified by mass spectrometry were recombinantly expressed and purified from E. coli and evaluated by the guinea pig potency test. Seven recombinant proteins showed greater erythema as compared to the reference PPD lot 9801 in paired guinea pigs and were able to stimulate interferon-gamma production in blood from Johne’s positive animals. These results suggest that autoclaving culture suspensions is not a necessary step in PPD production and specific proteins could supplant the PPD antigen for intradermal skin testing procedures and for use as in-vitro assay reagents.
Collapse
|
8
|
Characterization of a Mycobacterium avium subsp. avium operon associated with virulence and drug detoxification. BIOMED RESEARCH INTERNATIONAL 2014; 2014:809585. [PMID: 24967408 PMCID: PMC4055363 DOI: 10.1155/2014/809585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/02/2014] [Indexed: 11/24/2022]
Abstract
The lprG-p55 operon of Mycobacterium tuberculosis and Mycobacterium bovis is involved in the transport of toxic compounds. P55 is an efflux pump that provides resistance to several drugs, while LprG is a lipoprotein that modulates the host's immune response against mycobacteria. The knockout mutation of this operon severely reduces the replication of both mycobacterial species during infection in mice and increases susceptibility to toxic compounds. In order to gain insight into the function of LprG in the Mycobacterium avium complex, in this study, we assayed the effect of the deletion of lprG gene in the D4ER strain of Mycobacterium avium subsp. avium. The replacement of lprG gene with a hygromycin cassette caused a polar effect on the expression of p55. Also, a twofold decrease in ethidium bromide susceptibility was observed and the resistance to the antibiotics rifampicin, amikacin, linezolid, and rifabutin was impaired in the mutant strain. In addition, the mutation decreased the virulence of the bacteria in macrophages in vitro and in a mice model in vivo. These findings clearly indicate that functional LprG and P55 are necessary for the correct transport of toxic compounds and for the survival of MAA in vitro and in vivo.
Collapse
|
9
|
|
10
|
Kavid N, Madani R, Hosseinkhani S, Mosavari N, Golchinfar F, Emami T, Keshavarz R. Evaluation of immunogenicity of purified cell wall-associated 34 kDa antigen of Mycobacterium avium subsp. paratuberculosis infection. Hybridoma (Larchmt) 2012; 31:163-7. [PMID: 22741579 DOI: 10.1089/hyb.2011.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The 34 kDa cell wall protein of Mycobacterium avium subsp. paratuberculosis (MAP) has been suggested as a major species-specific immunodominant antigen in Johne's disease. However to date, there has not been a purified 34 kDa protein isolated from bacterial lysates used in immunogenicity analysis. Therefore we attempted to assess the immunogenicity properties of the purified cell wall 34 kDa protein for the first time, and compare the results with previous studies. We used an ELISA test for evaluation of the immunogenicity of this 34 kDa antigen against MAP infection. All serum samples from cattle confirmed to be infected with MAP were positive and those from healthy cattle were negative with the present antigen in ELISA tests. The sensitivity and specificity of 34 kDa antigen were then evaluated in comparison with a standard commercial kit and whole cell wall extracts. The results indicated that the pure 34 kDa antigen specific to MAP with high specificity and sensitivity has a strong potential for use in serodiagnosis assays and screening of Johne's disease.
Collapse
Affiliation(s)
- Narges Kavid
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karadj, Iran
| | | | | | | | | | | | | |
Collapse
|
11
|
Yoo HS, Shin SJ. Recent research on bovine paratuberculosis in South Korea. Vet Immunol Immunopathol 2012; 148:23-8. [PMID: 22749233 DOI: 10.1016/j.vetimm.2012.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/31/2012] [Accepted: 06/05/2012] [Indexed: 01/27/2023]
Abstract
Bovine paratuberculosis (Johne's disease), a chronic and debilitating disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a major cause of chronic ruminant enteritis. A national eradication program has been in place in South Korea since the first report of the disease in 1967; however, only limited data on bovine paratuberculosis in South Korea are available. Some research, such as investigations of the reactivity of animal sera against MAP antigens, has been done in localized areas and in limited animal species. Compared with the worldwide situation, the development of diagnostic methods in South Korea has shown similar results even though some data were obtained from international collaborative studies. MAP is considered by some to be zoonotic, noting an association with Crohn's disease, although this issue is still controversial; however, research into this association is limited. Decisions based on disease priorities have hampered active progress in research on the disease. In this paper, we reviewed the available results generated from South Korea compared with global research. Finally, we propose a theme for future research.
Collapse
Affiliation(s)
- Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 for Veterinary Science, Seoul National University, Seoul 151-742, South Korea.
| | | |
Collapse
|
12
|
Mikkelsen H, Aagaard C, Nielsen SS, Jungersen G. Review of Mycobacterium avium subsp. paratuberculosis antigen candidates with diagnostic potential. Vet Microbiol 2011; 152:1-20. [DOI: 10.1016/j.vetmic.2011.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/02/2011] [Accepted: 03/10/2011] [Indexed: 11/25/2022]
|
13
|
Taraktsoglou M, Szalabska U, Magee DA, Browne JA, Sweeney T, Gormley E, MacHugh DE. Transcriptional profiling of immune genes in bovine monocyte-derived macrophages exposed to bacterial antigens. Vet Immunol Immunopathol 2011; 140:130-9. [DOI: 10.1016/j.vetimm.2010.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/07/2023]
|
14
|
Prevalence, nucleotide sequence and expression studies of two proteins of a 5.6kb, class III, Bacteroides plasmid frequently found in clinical isolates from European countries. Plasmid 2009; 63:86-97. [PMID: 20026106 DOI: 10.1016/j.plasmid.2009.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 11/24/2022]
Abstract
In order to gain information on the significance and functions of small molecular weight plasmids (usually regarded as cryptic) of Bacteroides isolates, we screened 178 European clinical Bacteroides isolates for plasmids and determined the nucleotide sequence of a 5.6kb plasmid. The previously observed frequent plasmid types (Classes I-III; 2.7, 4.2 and 5.6kb, respectively) were found to exhibit different distributions in five European countries as concerns plasmid type, geographical location, taxonomy and time course. The Class I plasmids displayed markedly different distribution properties from those of the Class II and III plasmids. The nucleotide sequence of a representative of the most frequent Class III plasmids, pBFP35, originating from Hungary, was determined (5594bp) and analyzed. A total of eight open reading frames (ORFs) were annotated, of which four proved to participate unequivocally in such plasmid maintenance functions as replication (repA(P35)), mobilization (mobA(P35)) and stability (mazE(P35) and mazF(P35)). Four additional ORFs (orf1-4) were identified. Orf1 was predicted to code a lipoprotein. In expression studies in an Escherichia coli host, Orf1 behaved as a periplasmic protein.
Collapse
|
15
|
Gioffré A, Echeverría-Valencia G, Arese A, Morsella C, Garbaccio S, Delgado F, Zumárraga M, Paolicchi F, Cataldi A, Romano M. Characterization of the Apa antigen from M. avium subsp. paratuberculosis: A conserved Mycobacterium antigen that elicits a strong humoral response in cattle. Vet Immunol Immunopathol 2009; 132:199-208. [DOI: 10.1016/j.vetimm.2009.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 02/17/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
|
16
|
Evaluation of the immunogenicity of recombinant stress-associated proteins during Mycobacterium avium subsp. paratuberculosis infection: Implications for pathogenesis and diagnosis. Vet Microbiol 2009; 137:290-6. [DOI: 10.1016/j.vetmic.2009.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/31/2008] [Accepted: 01/05/2009] [Indexed: 11/15/2022]
|
17
|
Santema W, Overdijk M, Barends J, Krijgsveld J, Rutten V, Koets A. Searching for proteins of Mycobacterium avium subspecies paratuberculosis with diagnostic potential by comparative qualitative proteomic analysis of mycobacterial tuberculins. Vet Microbiol 2009; 138:191-6. [PMID: 19349126 DOI: 10.1016/j.vetmic.2009.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/02/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Accurate immunodiagnosis of bovine paratuberculosis is among others hampered by the lack of specific antigens. One of the most frequently used antigen preparations is purified protein derivative (PPD), also known as tuberculin. This crude extract has limitations when used in diagnostic assays due to the presence of cross-reactive antigens. The aim of the current study was to systematically analyze the qualitative protein composition of PPD of the major mycobacterial pathogens. One-dimensional gel electrophoresis followed by tandem mass spectrometry analysis of PPD from Mycobacterium avium subspecies paratuberculosis (MAP), Mycobacterium avium subspecies avium (MAA) and Mycobacterium bovis (MB) identified 156, 95 and 132 proteins, respectively. Comparative sequence analysis led to the selection of a MAP-specific protein (MAP1718c), and finally heterologous expression in Escherichia coli of this and other diagnostic candidate proteins (MAP3515c and MAP1138c (LprG)) enabled evaluation of their immunogenicity. Lymphocyte proliferation responses did not indicate substantial diagnostic potential of the antigens tested. In contrast serum antibody levels for MAP1138c in paratuberculosis infected cows (N=20) were significantly higher (p<0.01) than in control animals (N=20), despite the conserved nature of this protein. In conclusion, this study showed that a combination of proteomics and genomics, starting from complex protein mixtures, present in tuberculins, can reveal novel proteins aiding the development of immunodiagnostics for mycobacterial diseases.
Collapse
Affiliation(s)
- Wiebren Santema
- Department of Infectious Diseases and Immunology, Immunology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Leroy B, Viart S, Trinchero N, Roupie V, Govaerts M, Letesson JJ, Huygen K, Wattiez R. Use of Mycobacterium avium subsp. paratuberculosis specific coding sequences for serodiagnosis of bovine paratuberculosis. Vet Microbiol 2008; 135:313-9. [PMID: 18977614 DOI: 10.1016/j.vetmic.2008.09.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/28/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
In this study, the finished complete genome of Mycobacterium avium subsp. paratuberculosis (Map) was screened for specific coding sequences that could be very valuable in the design of a sensitive and specific Map detection serological assay. Eighty-seven Map-specific sequences were retained. Among these, three candidate antigens have been analysed for their serodiagnostic potential. These antigens were selected on the basis of their putative immunogenicity as predicted by in silico analysis. The antigens were cloned in Escherichia coli, expressed, and purified before testing in an antibody detection ELISA test, using a well characterized panel of 18 and 48 sera from Map infected and uninfected cattle, respectively. Two of these antigens, antigen 6 and MAP1637c, yielded in our conditions a sensitivity of 72% and 82%, respectively, for a specificity of 98%. It is particularly noticeable that, when probed with the same serum panel, the most widely used European paratuberculosis commercial seroassay (Pourquier test) yielded a sensitivity of 72% for a specificity of only 92%.
Collapse
Affiliation(s)
- B Leroy
- Department of Proteomic and Protein Biochemistry, University of Mons-Hainaut, Av. du Champs de Mars, 6, B-7000 Mons, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Johne's disease, or paratuberculosis, is a chronic granulomatous enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) affecting principally cattle, sheep and goats. Primarily, there are two clinical signs: cachexia and chronic diarrhea (less common in goats and sheep). This disease results in considerable economic losses in livestock industry, particularly the dairy sector. The route of transmission is mostly by the fecal-oral route, but hygienic measures and culling of shedding animals are not sufficient to eradicate this disease. Moreover, diagnostic tools available at this moment are not powerful enough to perform early and specific diagnosis. Existing vaccines, based on whole killed or live-attenuated bacteria, can delay the onset of clinical symptoms but do not protect against infection. Moreover, vaccinated animals develop antibodies that interfere with existing serodiagnostic tests for paratuberculosis and they become reactive in the tuberculin skin test, used for the control of bovine tuberculosis. This review summarizes the current knowledge of the immune responses induced by MAP infection, with focus on cattle studies. It provides an overview of the existing MAP vaccines and comments on the development of second-generation subunit vaccines based on new technologies.
Collapse
Affiliation(s)
- Valérie Rosseels
- WIV-Pasteur Institute Brussels, Laboratory of Mycobacterial Immunology, 642 Engelandstraat, B1180 Brussels, Belgium.
| | | |
Collapse
|
20
|
A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis. PLoS One 2007; 2:e1229. [PMID: 18043737 PMCID: PMC2082073 DOI: 10.1371/journal.pone.0001229] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 10/26/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. METHODS We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. PRINCIPAL FINDINGS Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. CONCLUSIONS/SIGNIFICANCE A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly immunogenic without adverse effect in mice and both attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection and conferred protection against subsequent challenge. Further studies of the present vaccine in naturally infected animals and humans are indicated.
Collapse
|
21
|
Profiling bovine antibody responses to Mycobacterium avium subsp. paratuberculosis infection by using protein arrays. Infect Immun 2007; 76:739-49. [PMID: 18039835 DOI: 10.1128/iai.00915-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the genome sequence of Mycobacterium avium subsp. paratuberculosis determined, technologies are now being developed for construction of protein arrays to detect the presence of antibodies against M. avium subsp. paratuberculosis in host serum. The power of this approach is that it enables a direct comparison of M. avium subsp. paratuberculosis proteins to each other in relation to their immunostimulatory capabilities. In this study, 93 recombinant proteins, produced in Escherichia coli, were arrayed and spotted onto nitrocellulose. These proteins include unknown hypothetical proteins and cell surface proteins as well as proteins encoded by large sequence polymorphisms present uniquely in M. avium subsp. paratuberculosis. Also included were previously reported or known M. avium subsp. paratuberculosis antigens to serve as a frame of reference. Sera from healthy control cattle (n = 3) and cattle infected with either M. avium subsp. avium and Mycobacterium bovis were exposed to the array to identify nonspecific or cross-reactive epitopes. These data demonstrated a degree of cross-reactivity with the M. avium subsp. avium proteins that was higher than the degree of cross-reactivity with the more distantly related M. bovis proteins. Finally, sera from naturally infected cattle (n = 3) as well as cattle experimentally infected with M. avium subsp. paratuberculosis (n = 3) were used to probe the array to identify antigens in the context of Johne's disease. Three membrane proteins were the most strongly detected in all serum samples, and they included an invasion protein, an ABC peptide transport permease, and a putative GTPase protein. This powerful combination of genomic information, molecular tools, and immunological assays has enabled the identification of previously unknown antigens of M. avium subsp. paratuberculosis.
Collapse
|
22
|
Ferwerda G, Kullberg BJ, de Jong DJ, Girardin SE, Langenberg DML, van Crevel R, Ottenhoff THM, Van der Meer JWM, Netea MG. Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J Leukoc Biol 2007; 82:1011-8. [PMID: 17652449 DOI: 10.1189/jlb.0307147] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium paratuberculosis has been suggested to be involved in the pathogenesis of Crohn's disease (CD). The importance of microorganisms in CD is supported by the association of CD with mutations in the intracellular pathogen recognition receptor (PRR) nucleotide-binding oligomerization domain 2 (NOD2). The aim of this study is to investigate the PRR involved in the recognition of M. paratuberculosis. Methods used include in vitro stimulation of transfected cell lines, murine macrophages, and human PBMC. M. paratuberculosis stimulated human TLR2 (hTLR2)-Chinese hamster ovary (CHO) cells predominantly and hTLR4-CHO cells modestly. Macrophages from TLR2 and TLR4 knockout mice produced less cytokines compared with controls after stimulation with M. paratuberculosis. TLR4 inhibition in human PBMC reduced cytokine production only after stimulation with live M. paratuberculosis. TLR-induced TNF-alpha, IL-1beta, and IL-10 production is mediated through MyD88, whereas Toll-IL-1R domain-containing adaptor inducing IFN-beta (TRIF) promoted the release of IL-1beta. hNOD2-human embryo kidney (HEK) cells, but not hNOD1-HEK cells, responded to stimulation with M. paratuberculosis. PBMC of individuals homozygous for the 3020insC NOD2 mutation showed a 70% defective cytokine response after stimulation with M. paratuberculosis. These results demonstrate that TLR2, TLR4, and NOD2 are involved in the recognition of M. paratuberculosis by the innate immune system.
Collapse
Affiliation(s)
- Gerben Ferwerda
- Department of Internal Medicine and Nijmegen University Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leroy B, Roupie V, Noël-Georis I, Rosseels V, Walravens K, Govaerts M, Huygen K, Wattiez R. Antigen discovery: A postgenomic approach to paratuberculosis diagnosis. Proteomics 2007; 7:1164-76. [PMID: 17366477 DOI: 10.1002/pmic.200600988] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Paratuberculosis is a chronic enteritis caused in domestic and wild ruminant species by Mycobacterium avium subsp. paratuberculosis (MAP) that is responsible for major economic losses to the agricultural industry. To date, no satisfactory therapeutic, vaccine, or diagnostic tools are available, globally impairing all control programs. In this study, we have undertaken a large-scale postgenomic analysis of MAP proteins, to identify specific antigens that could potentially improve the diagnosis of paratuberculosis. Two complementary approaches were implemented, the first one consisting in the systematic proteomic identification of proteins present in MAP culture filtrates (CFs), followed by the selection of MAP-specific proteins by BLAST query on available mycobacterial genomes. The resulting database represents the first established secretome of MAP and a useful source of potentially specific antigens. The second approach consisted in the immunoproteomic analysis of both MAP extracts and CFs, using sera from MAP-infected and uninfected cattle. Combining results obtained with both approaches resulted in the identification of 25 candidate diagnostic antigens. Five of these were tested in an ELISA assay for their diagnostic potential, on a limited panel of field sera, and the combination of three of them competed in performance with available commercial assays, reaching a test sensitivity of 94.74% and specificity of 97.92%.
Collapse
Affiliation(s)
- Baptiste Leroy
- Department of Proteomics and Protein Biochemistry, University of Mons-Hainaut, Mons, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rigden RC, Jandhyala DM, Dupont C, Crosbie-Caird D, Lopez-Villalobos N, Maeda N, Gicquel B, Murray A. Humoral and cellular immune responses in sheep immunized with a 22 kilodalton exported protein of Mycobacterium avium subspecies paratuberculosis. J Med Microbiol 2006; 55:1735-1740. [PMID: 17108279 DOI: 10.1099/jmm.0.46785-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An immunogenic 22 kilodalton exported Mycobacterium avium subspecies paratuberculosis (MAP) lipoprotein (P22) was previously identified, and found to belong to the LppX/LprAFG family of mycobacterial lipoproteins. N-terminal polyhistidine-tagged P22 was produced and purified from Escherichia coli. Antibody recognition of P22, and interferon-gamma (IFN-gamma) responses in vitro using blood from a sheep vaccinated with Neoparasec, confirmed its immunogenicity. To evaluate the immunogenicity of P22 in vivo, five sheep were immunized with a single dose containing 0.8 mg recombinant P22 protein in adjuvant. Blood was collected at 4, 13 and 29 weeks post-immunization (p.i.) and tested for anti-P22 antibodies and P22-specific IFN-gamma production. P22-specific antibodies were detected by Western blot analysis in all five Neoparasec-immunized sheep at the three time points. Three out of five P22-immunized sheep produced P22-specific antibodies for up to 13 weeks p.i., and two gave a response at 29 weeks p.i. Recombinant P22 was able to stimulate significant IFN-gamma production in blood of P22-immunized sheep at 13 and 29 weeks p.i. Recombinant P22 also elicited an IFN-gamma response in blood of sheep immunized with Neoparasec.
Collapse
Affiliation(s)
- Rachael C Rigden
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Dakshina M Jandhyala
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Chris Dupont
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Dianna Crosbie-Caird
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Nicolas Lopez-Villalobos
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Norihiro Maeda
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Alan Murray
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|