1
|
El-Sharkawy H, Abd El-Salam AM, Tahoun A. Pathology and Epidemiology of Fungal Infections in Layer Chicken Flocks. ADVANCED GUT & MICROBIOME RESEARCH 2023; 2023:1-13. [DOI: 10.1155/2023/9956074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Fungal infections have a key effect on the commercial poultry production and welfare. Infections caused by fungi and their food contaminants are zoonotic and influence food safety. Eggs and cooked meats remain major public health concerns. Therefore, this research is aimed at examining the pathology and understanding the epidemiology of fungal infection in layer chicken flocks. The study was carried out on twenty-layer flocks from Kafrelsheikh Governorate, Egypt, from January 2019 to December 2020. In total, 600 samples were collected from 100 healthy and diseased layer chickens from different organs (skin, liver, lung, kidney, spleen, and ovary). In this work, we present the clinical and pathological characteristics of some fungal pathogens (Aspergillus spp. and Fusarium spp.) in layer chicken flocks, as they are responsible for reducing the egg production. In total, 19 fungal strains were isolated from individual chickens, and these were analysed to determine the fungal species. The total proportion of fungal infections at the farm level was (3/20) 15%. The main clinical signs were emaciation and mortalities that reached
. We report the first isolation of Aspergillus piperis and Fusarium species from the ovary of poultry, which is the main reason for egg retention and multiple numerous nodules of occasional caseating centers in layer ovaries. The histopathological findings of Aspergillus infection are indicated by the presence of branched hyphae that tend to be numerous and progressive. Furthermore, we found spherules with multiple endospores of Fusarium spp. in the ovaries. Morphological and molecular identification and analysis were performed to confirm the etiological agents.
Collapse
Affiliation(s)
- Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Ahmed M. Abd El-Salam
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Science, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Amin Tahoun
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| |
Collapse
|
2
|
Krulj J, Ćurčıć N, Stančıć AB, Kojıć J, Pezo L, Tukuljac LP, Solarov MB. Molecular Identification and Characterisation of Aspergillus Flavus Isolates Originating from Serbian Wheat Grains. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.4.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During previous years, regarding the shifts in climate conditions in temperate region, such as occurrence of high temperatures and prolonged drought, increased occurrence frequencies of Aspergillus flavus and aflatoxins in cereal grains were recorded. A reliable and accurate identification of the fungi is of great importance for evaluating the microbiological risks of contamination. The essential point of the present investigation was molecular characterisation and identification of A. flavus isolates originating from common wheat and spelt grains collected after harvest during the period of three years (2015–2017) in Northern Serbia. A holistic approach that included PCR amplification of two DNA genomic regions and PCR-RFLP assay followed by fragment length analysis, provided complete and comprehensive characterisation of A. flavus isolated from wheat grains. The presented results indicate that there was no difference among the tested Aspergillus isolates on the molecular–genetic level. All 38 strains were identified as A. flavus by sequencing of combined ITS region and β-tubulin gene fragments (acc. no.: MH582473 to MH582510). PCR-RFLP method in combination with a Lab-on-a-chip (LoaC) electrophoresis can be successfully used to rapidly identify A. flavus isolates.
Collapse
Affiliation(s)
- J. Krulj
- aInstitute of Food Technology Novi Sad, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad. Serbia
| | - N. Ćurčıć
- aInstitute of Food Technology Novi Sad, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad. Serbia
| | - A. Bočarov Stančıć
- bInstitute for Science Application in Agriculture, Bulevar despota Stefana 68B, 11000 Belgrade. Serbia
| | - J. Kojıć
- aInstitute of Food Technology Novi Sad, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad. Serbia
| | - L. Pezo
- cInstitute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12 - 16, 11000 Belgrade. Serbia
| | - L. Peıć Tukuljac
- aInstitute of Food Technology Novi Sad, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad. Serbia
| | - M. Bodroža Solarov
- aInstitute of Food Technology Novi Sad, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad. Serbia
| |
Collapse
|
3
|
Tahoun A, Elnafarawy HK, Elmahallawy EK, Abdelhady A, Rizk AM, El-Sharkawy H, Youssef MA, El-Khodery S, Ibrahim HMM. Epidemiological and Molecular Investigation of Ocular Fungal Infection in Equine from Egypt. Vet Sci 2020; 7:vetsci7030130. [PMID: 32911615 PMCID: PMC7558555 DOI: 10.3390/vetsci7030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Diagnosis and treatment of ocular fungal infection in equine seems very challenging for owners and clinicians. The present study aimed to identify and characterize fungal species isolated from the eyes of clinically healthy and diseased equines (N = 100) from Dakahlia Governorate, Egypt. The work also involved morphological and molecular characterization of the major fungal species. In addition, correlations between the occurrence of isolated fungi and some of the potential risk factors were also investigated. Interestingly, the prevalence rate of ocular mycosis in all examined equines in the study was 28% and there were major clinical signs associated with ocular fungal infection. Moreover, the identified fungal species included Aspergillus flavus, A. fumigatus, A. niger, Penicillium spp., Mucor spp., and Alternari spp. with a corresponding prevalence rate of 63.9%, 27.8%, 15.3%, 18.1%, 13.9%, and 4.2%, respectively, in healthy equine eyes, while their prevalence in diseased equine eyes was 57.1%, 32.1%, 21.4%, 7.1%, 3.6%, and 0%. Furthermore, a statistical significant association (p < 0.05) was found between the frequency of isolation of A. fumigatus and Penicillium and several risk factors (breed, sex, and ground type), while the remaining risk factors and occurrence of fungi were not statistically correlated. A subset of the Aspergillus species samples positive by polymerase chain reaction (PCR) were sequenced and their phylogenetic analysis identified three species of Aspergillus. Taken together, our study provides novel data related to the occurrence of ocular mycosis in equine in Egypt. Given the zoonotic potential of some identified fungi, our data may be helpful for implementation of novel diagnostic and therapeutic strategies for combating this sight-threatening infection in equine.
Collapse
Affiliation(s)
- Amin Tahoun
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelshkh University, Kafrelsheikh 33511, Egypt;
| | - Helmy K. Elnafarawy
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (H.K.E.); (M.A.Y.); (S.E.-K.)
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Department of Biomedical Sciences, University of Leon, s/n, 24071 León, Spain
- Correspondence: (E.K.E.); (H.M.M.I.)
| | - Abdelhamed Abdelhady
- Parasitology and Animal Diseases Department, National Research center, Dokki, Giza, 12622, Egypt;
| | - Amira M. Rizk
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt;
| | - Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Mohamed A. Youssef
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (H.K.E.); (M.A.Y.); (S.E.-K.)
| | - Sabry El-Khodery
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (H.K.E.); (M.A.Y.); (S.E.-K.)
| | - Hussam M. M. Ibrahim
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (H.K.E.); (M.A.Y.); (S.E.-K.)
- Correspondence: (E.K.E.); (H.M.M.I.)
| |
Collapse
|
4
|
Mohamadnia A, Salehi Z, Namvar Z, Tabarsi P, Pourabdollah-Toutkaboni M, Rezaie S, Marjani M, Moniri A, Abtahian Z, Mahdaviani SA, Mortezaee V, Askari E, Sharifynia S. Molecular identification, phylogenetic analysis and antifungal susceptibility patterns of Aspergillusnidulans complex and Aspergillusterreus complex isolated from clinical specimens. J Mycol Med 2020; 30:101004. [PMID: 32534826 DOI: 10.1016/j.mycmed.2020.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/15/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Aspergillus sections Terrei and Nidulantes are the less common causes of invasive aspergillosis and pulmonary aspergillosis (PA) in immunocompromised patients when compared to A. fumigatus and A. flavus. Identifying these fungi as the infectious agent is crucial because of the resistance to amphotericin B (AMB) and increased lethality. The aim of this study was to identify the molecular status, evaluate the genetic diversity and examine the antifungal susceptibility profile of the uncommon Aspergillus species. Forty-five uncommon Aspergillus species were identified based on the microscopic and macroscopic criteria. Then, the molecular identification was performed using the sequencing beta tubulin (benA) gene. In vitro antifungal susceptibility to amphotericin B (AMB), itraconazole (ITC), ravuconazole (RAV), voriconazole (VRC), caspofungin (CFG) isavuconazole (ISA) and posaconazole (POS) test was performed according to the CLSI M38-A2 guidelines. RESULTS A. terreus was the most species detected, followed by A. nidulans, A. latus, A.ochraceus, and A. citrinoterreus, respectively. The analysis of the benA gene showed the presence of 12 distinct genotypes among the A. terreus isolates. The other species did not show any intraspecies variation. CFG exhibited the lowest MEC50/MIC50 (0.007μg/mL), followed by POS (0.125μg/mL), VRC, ITC, ISA (0.25μg/mL), RAV (0.5μg/mL), and AMB (8μg/mL). Among all the isolates, only 15.5% (7/45) were susceptible to AMB. CONCLUSION Antifungal susceptibility pattern of the uncommon Aspergillus species is useful to improve patient management and increase knowledge concerning the local epidemiology. Moreover, this information is necessary when an outbreak dealing with drug-resistant infections occurs.
Collapse
Affiliation(s)
- A Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z Salehi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Z Namvar
- Department of Biotechnology, Animal Breeding Center, Tehran, Iran
| | - P Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Pourabdollah-Toutkaboni
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Rezaie
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Moniri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z Abtahian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S A Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - V Mortezaee
- Department of Medical mycology, Mazandaran University of Medical Sciences, Sari, Iran
| | - E Askari
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Sharifynia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Diba K, Jangi F, Makhdoomi K, Moshiri N, Mansouri F. Aspergillus diversity in the environments of nosocomial infection cases at a university hospital. J Med Life 2019; 12:128-132. [PMID: 31406513 PMCID: PMC6685303 DOI: 10.25122/jml-2018-0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aspergillus species (sp.) that causes opportunistic infections have been increasingly found in human mainly immunosuppressive patients around the world every year. The main objective was to use a rapid and cheap molecular method for monitoring Aspergillus infections and epidemiological approaches. In order to identity Aspergilli species (spp.), a number of molecular methods including restriction fragment length polymorphism (RFLP) have been employed in accordance with ribosomal RNA amplification. The focus of this study — a group of hospitalized patients with clinical and subclinical signs of infection. All of the collected clinical specimens were transported to the medical mycology lab and examined for Aspergillus identification. The environmental specimens were collected from air and surfaces inspected for the Aspergillus within the hospital sources. At first, growth characteristics and microscopic features on mycological media for the identification of Aspergillus sp. were performed. For the confirmation of Aspergillus isolates which similarly found in clinical and environmental sources, molecular method polymerase chain reaction/restriction fragment length polymorphism was carried out. From the mentioned specimens, 102 fungal isolates included Candida spp., Aspergillus spp. and other fungi. Aspergillus flavus (47%), Aspergillus fumigatus (29.4%) and Aspergillus niger (23.5%) all were found as the most common clinical isolates. In addition, Aspergillus isolates from environmental were Aspergillus niger (43.7%), Aspergillus flavus (41.7%), Aspergillus fumigatus (14.6%). Therefore, polymerase chain reaction-restriction fragment length polymorphism with a single restriction enzyme can be very useful in the identification of Aspergillus spp., because of its facility in use, speed, robust, and high sensitivity of diagnosis.
Collapse
Affiliation(s)
- Kambiz Diba
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzaneh Jangi
- Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Khadijeh Makhdoomi
- Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Moshiri
- Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Mansouri
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Mortaz E, Sarhifynia S, Marjani M, Moniri A, Mansouri D, Mehrian P, van Leeuwen K, Roos D, Garssen J, Adcock IM, Tabarsi P. An adult autosomal recessive chronic granulomatous disease patient with pulmonary Aspergillus terreus infection. BMC Infect Dis 2018; 18:552. [PMID: 30409207 PMCID: PMC6225587 DOI: 10.1186/s12879-018-3451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 10/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background Genetic mutations that reduce intracellular superoxide production by granulocytes causes chronic granulomatous disease (CGD). These patients suffer from frequent and severe bacterial and fungal infections throughout their early life. Diagnosis is usually made in the first 2 years of life but is sometimes only diagnosed when the patient is an adult although they may have suffered from symptoms since childhood. Case presentation A 26-year-old man was referred with weight loss, fever, hepatosplenomegaly and coughing. He had previously been diagnosed with lymphadenopathy in the neck at age 8 and prescribed anti-tuberculosis treatment. A chest radiograph revealed extensive right-sided consolidation along with smaller foci of consolidation in the left lung. On admission to hospital he had respiratory problems with fever. Laboratory investigations including dihydrorhodamine-123 (DHR) tests and mutational analysis indicated CGD. Stimulation of his isolated peripheral blood neutrophils (PMN) with phorbol 12-myristate 13-acetate (PMA) produced low, subnormal levels of reactive oxygen species (ROS). Aspergillus terreus was isolated from bronchoalveolar lavage (BAL) fluid and sequenced. Conclusions We describe, for the first time, the presence of pulmonary A. terreus infection in an adult autosomal CGD patient on long-term corticosteroid treatment. The combination of the molecular characterization of the inherited CGD and the sequencing of fungal DNA has allowed the identification of the disease-causing agent and the optimal treatment to be given as a consequence.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Somayeh Sarhifynia
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Mehrian
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Ian M Adcock
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia.,Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Identification and characterization of genes involved in kojic acid biosynthesis in Aspergillus flavus. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1297-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
8
|
Nouripour-Sisakht S, Ahmadi B, Makimura K, Hoog SD, Umeda Y, Alshahni MM, Mirhendi H. Characterization of the translation elongation factor 1-α gene in a wide range of pathogenic Aspergillus species. J Med Microbiol 2017; 66:419-429. [PMID: 28425876 DOI: 10.1099/jmm.0.000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE We aimed to evaluate the resolving power of the translation elongation factor (TEF)-1α gene for phylogenetic analysis of Aspergillus species. METHODOLOGY Sequences of 526 bp representing the coding region of the TEF-1α gene were used for the assessment of levels of intra- and inter-specific nucleotide polymorphism in 33 species of Aspergillus, including 57 reference, clinical and environmental strains. RESULTS Analysis of TEF-1α sequences indicated a mean similarity of 92.6 % between the species, with inter-species diversity ranging from 0 to 70 nucleotides. The species with the closest resemblance were A. candidus/A. carneus, and A. flavus/A. oryzae/A. ochraceus, with 100 and 99.8 % identification, respectively. These species are phylogenetically very close and the TEF-1α gene appears not to have sufficient discriminatory power to differentiate them. Meanwhile, intra-species differences were found within strains of A. clavatus, A. clavatonanicus, A. candidus, A. fumigatus, A. terreus, A. alliaceus, A. flavus, Eurotium amstelodami and E. chevalieri. The tree topology with strongly supported clades (≥70 % bootstrap values) was almost compatible with the phylogeny inferred from analysis of the DNA sequences of the beta tubulin gene (BT2). However, the backbone of the tree exhibited low bootstrap values, and inter-species correlations were not obvious in some clades; for example, tree topologies based on BT2 and TEF-1α genes were incompatible for some species, such as A. deflectus, A. janus and A. penicillioides. CONCLUSION The gene was not phylogenetically more informative than other known molecular markers. It will be necessary to test other genes or larger genomic regions to better understand the taxonomy of this important group of fungi.
Collapse
Affiliation(s)
- Sadegh Nouripour-Sisakht
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Departments of Medical Parasitology & Mycology, School of Public Health; National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Ahmadi
- Department of Microbiology and Parasitology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Koichi Makimura
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Sybren de Hoog
- Fungal Biodiversity Center, Institute of the Royal Netherlands, Academy of Arts and Sciences, Centraalbureau voor Schimmelcultures-KNAW, Utrecht, Netherlands
| | - Yoshiko Umeda
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Mohamed Mahdi Alshahni
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Hossein Mirhendi
- Departments of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Dixit G, Shah AR, Madamwar D, Narra M. High solid saccharification using mild alkali-pretreated rice straw by hyper-cellulolytic fungal strain. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0075-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Diba K, Rahimirad M, Makhdoomi K, Eslamloo N. Aspergillus monitoring project in a large educational hospital using molecular assay. Afr J Infect Dis 2014; 8:1-4. [PMID: 24653809 DOI: 10.4314/ajid.v8i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND It is important to find reliable and accessible methods for the diagnosis and identification of fungal species causing hospital acquired infections. Our main objective was using a rapid and accessible molecular method for the monitoring of Aspergillus infections and identification of causing agents in the level of species. MATERIAL AND METHODS The study subjects were primarily clinical specimens collected from suspected HAI patients with clinical symptoms after hospitalization. Also some environmental specimens were collected from air and instruments of health care facilities for the investigation of Aspergillus sources in a university hospital of UMSU, Urmia. All specimens were transported to Medical Mycology Center for the detection and identification of Aspergillus species using morphological methods. Also molecular method, PCR-RFLP using single restriction enzyme as a rapid and available method was performed to investigate environmental sources of Aspergillus infections. RESULTS Total of 110 clinical fungal isolates included Candida and Aspergillus species and some other opportunistic fungi. Among the clinical Aspergillus findings, Aspergillus flavus (47%), Aspergillus fumigatus (29.4%) and Aspergillus niger (23.6%) were the most frequent species respectively and also Aspergillus niger (43.7%), Aspergillus flavus (41.8%), Aspergillus fumigatus (14.7%) were isolated as the most frequent species from environmental sources. CONCLUSION Because of accessibility, speed and high sensitivity of diagnosis, the PCR-RFLP was very useful for the identification of medically important Aspergillus species and epidemiological approaches.
Collapse
Affiliation(s)
- K Diba
- Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mh Rahimirad
- Department of Lung Diseases, Imam educational hospital, Urmia University of Medical Sciences, Urmia, Iran ( )
| | - Kh Makhdoomi
- Department of Nephrology, Imam educational hospital, Urmia University of Medical Sciences, Urmia, Iran ( )
| | - Nf Eslamloo
- Department of foreign languages, Urmia University of Medical Sciences, Urmia, Iran. ( )
| |
Collapse
|
11
|
Reddy KRN, Farhana NI, Wardah AR, Salleh B. Morphological identification of foodborne pathogens colonizing rice grains in south Asia. Pak J Biol Sci 2010; 13:794-801. [PMID: 21850929 DOI: 10.3923/pjbs.2010.794.801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this study was to identify the foodborne pathogens mainly, Aspergillus sp. colonizing rice grains using cultural and microscopic methods. Four differential media (Czapek Dox Agar (CZA), Czapek Yeast Agar (CYA), Malt Extract Agar (MEA) and Czapek yeast 20% sucrose agar (CYA20S)) were used for differentiation of five Aspergillus sp., colonizing rice grains comparing with standard cultures. We studied macroscopic (colony color and diameter, conidia color, exudates, sclerotia and colony texture) and microscopic (conidiophore color, length and breadth, conidia size, shape and surface texture, vesicle diameter and phialides length and breadth) characteristics for identification of 110 isolates of Aspergillus sp. isolated from 65 rice grain samples collected from various countries in South Asia (Cambodia, India, Indonesia, Malaysia and Thailand). According to morphological characters, all these isolates were belonging to Aspergillus flavus (45), A. fumigatus (8), A. ochraceus (7), A. niger (42) and A. tamarii (8). This is the first report on identification of large number of Aspergillus strains isolated from rice grains in South Asia.
Collapse
Affiliation(s)
- K R N Reddy
- Plant Pathology, School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | | | | | |
Collapse
|
12
|
Advances in molecular detection of Aspergillus: an update. Arch Microbiol 2010; 192:409-25. [DOI: 10.1007/s00203-010-0563-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 11/01/2009] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
|
13
|
Lezar S, Barros E. Oligonucleotide microarray for the identification of potential mycotoxigenic fungi. BMC Microbiol 2010; 10:87. [PMID: 20307326 PMCID: PMC2858739 DOI: 10.1186/1471-2180-10-87] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 03/23/2010] [Indexed: 11/23/2022] Open
Abstract
Background Mycotoxins are secondary metabolites which are produced by numerous fungi and pose a continuous challenge to the safety and quality of food commodities in South Africa. These toxins have toxicologically relevant effects on humans and animals that eat contaminated foods. In this study, a diagnostic DNA microarray was developed for the identification of the most common food-borne fungi, as well as the genes leading to toxin production. Results A total of 40 potentially mycotoxigenic fungi isolated from different food commodities, as well as the genes that are involved in the mycotoxin synthetic pathways, were analyzed. For fungal identification, oligonucleotide probes were designed by exploiting the sequence variations of the elongation factor 1-alpha (EF-1 α) coding regions and the internal transcribed spacer (ITS) regions of the rRNA gene cassette. For the detection of fungi able to produce mycotoxins, oligonucleotide probes directed towards genes leading to toxin production from different fungal strains were identified in data available in the public domain. The probes selected for fungal identification and the probes specific for toxin producing genes were spotted onto microarray slides. Conclusions The diagnostic microarray developed can be used to identify single pure strains or cultures of potentially mycotoxigenic fungi as well as genes leading to toxin production in both laboratory samples and maize-derived foods offering an interesting potential for microbiological laboratories.
Collapse
Affiliation(s)
- Sabine Lezar
- Biosciences, Council for Scientific and Industrial Research (CSIR), Brummeria, Pretoria, South Africa.
| | | |
Collapse
|
14
|
Lau A, Chen S, Sleiman S, Sorrell T. Current status and future perspectives on molecular and serological methods in diagnostic mycology. Future Microbiol 2009; 4:1185-222. [DOI: 10.2217/fmb.09.70] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal infections are an important cause of infectious morbidity. Nonculture-based methods are increasingly used for rapid, accurate diagnosis to improve patient outcomes. New and existing DNA amplification platforms have high sensitivity and specificity for direct detection and identification of fungi in clinical specimens. Since laboratories are increasingly reliant on DNA sequencing for fungal identification, measures to improve sequence interpretation should support validation of reference isolates and quality control in public gene repositories. Novel technologies (e.g., isothermal and PNA FISH methods), platforms enabling high-throughput analyses (e.g., DNA microarrays and Luminex® xMAP™) and/or commercial PCR assays warrant further evaluation for routine diagnostic use. Notwithstanding the advantages of molecular tests, serological assays remain clinically useful for patient management. The serum Aspergillus galactomannan test has been incorporated into diagnostic algorithms of invasive aspergillosis. Both the galactomannan and the serum β-D-glucan test have value for diagnosing infection and monitoring therapeutic response.
Collapse
Affiliation(s)
- Anna Lau
- Centre for Infectious Diseases & Microbiology, University of Sydney, Sydney, Australia
| | - Sharon Chen
- Centre for Infectious Diseases & Microbiology, University of Sydney, Sydney, Australia and Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sue Sleiman
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Tania Sorrell
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Darcy and Hawkesbury Roads, Westmead, NSW 2145, Australia
| |
Collapse
|
15
|
Development and validation of a microsphere-based Luminex assay for rapid identification of clinically relevant aspergilli. J Clin Microbiol 2009; 47:1096-100. [PMID: 19244469 DOI: 10.1128/jcm.01899-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Luminex-based assay for the rapid identification of Aspergillus species was designed, optimized, and validated with 131 clinical isolates of Aspergillus fumigatus, A. flavus, A. niger, A. terreus, A. ustus, and A. versicolor. The six species-specific probes were directed toward the internal transcribed spacer 1 (ITS-1) region and tested in a multiplex format with results generated within 6 h. Species identifications generated by the Aspergillus Luminex assay were 100% concordant with results from comparative sequence analyses of the ITS-1 region and showed excellent specificity. The Aspergillus Luminex assay is a rapid, relatively simple method that may prove to be a useful diagnostic tool for rapid Aspergillus identification in clinical laboratory settings.
Collapse
|