1
|
Zhai YJ, Liu PY, Luo XW, Liang J, Sun YW, Cui XD, He DD, Pan YS, Wu H, Hu GZ. Analysis of Regulatory Mechanism of AcrB and CpxR on Colistin Susceptibility Based on Transcriptome and Metabolome of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0053023. [PMID: 37358428 PMCID: PMC10434024 DOI: 10.1128/spectrum.00530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.
Collapse
Affiliation(s)
- Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pei-Yi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xing-Wei Luo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Liang
- Zhengzhou Animal Husbandry Bureau, Zhengzhou, China
| | - Ya-Wei Sun
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao-Die Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Dale K, Globan M, Horan K, Sherry N, Ballard S, Tay EL, Bittmann S, Meagher N, Price DJ, Howden BP, Williamson DA, Denholm J. Whole genome sequencing for tuberculosis in Victoria, Australia: A genomic implementation study from 2017 to 2020. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 28:100556. [PMID: 36034164 PMCID: PMC9405109 DOI: 10.1016/j.lanwpc.2022.100556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background Whole genome sequencing (WGS) is increasingly used by tuberculosis (TB) programs to monitor Mycobacterium tuberculosis (Mtb) transmission. We aimed to characterise the molecular epidemiology of TB and Mtb transmission in the low-incidence setting of Victoria, Australia, and assess the utility of WGS. Methods WGS was performed on all first Mtb isolates from TB cases from 2017 to 2020. Potential clusters (≤12 single nucleotide polymorphisms [SNPs]) were investigated for epidemiological links. Transmission events in highly-related (≤5 SNPs) clusters were classified as likely or possible, based on the presence or absence of an epidemiological link, respectively. Case characteristics and transmission settings (as defined by case relationship) were summarised. Poisson regression was used to examine associations with secondary case number. Findings Of 1844 TB cases, 1276 (69.2%) had sequenced isolates, with 182 (14.2%) in 54 highly-related clusters, 2-40 cases in size. Following investigation, 140 cases (11.0% of sequenced) were classified as resulting from likely/possible local-transmission, including 82 (6.4%) for which transmission was likely. Common identified transmission settings were social/religious (26.4%), household (22.9%) and family living in different households (7.1%), but many were uncertain (41.4%). While household transmission featured in many clusters (n = 24), clusters were generally smaller (median = 3 cases) than the fewer that included transmission in social/religious settings (n = 12, median = 7.5 cases). Sputum-smear-positivity was associated with higher secondary case numbers. Interpretation WGS results suggest Mtb transmission commonly occurs outside the household in our low-incidence setting. Further work is required to optimise the use of WGS in public health management of TB. Funding The Victorian Tuberculosis Program receives block funding for activities including case management and contact tracing from the Victorian Department of Health. No specific funding for this report was received by manuscript authors or the Victorian Tuberculosis Program, and the funders had no role in the study design, data collection, data analysis, interpretation or report writing.
Collapse
Affiliation(s)
- Katie Dale
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Norelle Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ee Laine Tay
- Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Public Health Division, Department of Health, Victoria, Australia
| | - Simone Bittmann
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Niamh Meagher
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David J. Price
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Justin Denholm
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Abstract
Within-host adaptation is a hallmark of chronic bacterial infections, involving substantial genomic changes. Recent large-scale genomic data from prolonged infections allow the examination of adaptive strategies employed by different pathogens and open the door to investigate whether they converge toward similar strategies. Here, we compiled extensive data of whole-genome sequences of bacterial isolates belonging to miscellaneous species sampled at sequential time points during clinical infections. Analysis of these data revealed that different species share some common adaptive strategies, achieved by mutating various genes. Although the same genes were often mutated in several strains within a species, different genes related to the same pathway, structure, or function were changed in other species utilizing the same adaptive strategy (e.g., mutating flagellar genes). Strategies exploited by various bacterial species were often predicted to be driven by the host immune system, a powerful selective pressure that is not species specific. Remarkably, we find adaptive strategies identified previously within single species to be ubiquitous. Two striking examples are shifts from siderophore-based to heme-based iron scavenging (previously shown for Pseudomonas aeruginosa) and changes in glycerol-phosphate metabolism (previously shown to decrease sensitivity to antibiotics in Mycobacterium tuberculosis). Virulence factors were often adaptively affected in different species, indicating shifts from acute to chronic virulence and virulence attenuation during infection. Our study presents a global view on common within-host adaptive strategies employed by different bacterial species and provides a rich resource for further studying these processes.
Collapse
Affiliation(s)
- Yair E Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Goossens SN, Sampson SL, Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev 2020; 34:e00141-20. [PMID: 33055230 PMCID: PMC7566895 DOI: 10.1128/cmr.00141-20] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Successful treatment of tuberculosis (TB) can be hampered by Mycobacterium tuberculosis populations that are temporarily able to survive antibiotic pressure in the absence of drug resistance-conferring mutations, a phenomenon termed drug tolerance. We summarize findings on M. tuberculosis tolerance published in the past 20 years. Key M. tuberculosis responses to drug pressure are reduced growth rates, metabolic shifting, and the promotion of efflux pump activity. Metabolic shifts upon drug pressure mainly occur in M. tuberculosis's lipid metabolism and redox homeostasis, with reduced tricarboxylic acid cycle activity in favor of lipid anabolism. Increased lipid anabolism plays a role in cell wall thickening, which reduces sensitivity to most TB drugs. In addition to these general mechanisms, drug-specific mechanisms have been described. Upon isoniazid exposure, M. tuberculosis reprograms several pathways associated with mycolic acid biosynthesis. Upon rifampicin exposure, M. tuberculosis upregulates the expression of its drug target rpoB Upon bedaquiline exposure, ATP synthesis is stimulated, and the transcription factors Rv0324 and Rv0880 are activated. A better understanding of M. tuberculosis's responses to drug pressure will be important for the development of novel agents that prevent the development of drug tolerance following treatment initiation. Such agents could then contribute to novel TB treatment-shortening strategies.
Collapse
Affiliation(s)
- Sander N Goossens
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Samantha L Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Sun J, Champion PA, Bigi F. Editorial: Cellular and Molecular Mechanisms of Mycobacterium tuberculosis Virulence. Front Cell Infect Microbiol 2019; 9:331. [PMID: 31649893 PMCID: PMC6794420 DOI: 10.3389/fcimb.2019.00331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Fabiana Bigi
- Institute of Biotechnology, National Institute of Agricultural Technology, Buenos Aires, Argentina
| |
Collapse
|
6
|
Deciphering Within-Host Microevolution of Mycobacterium tuberculosis through Whole-Genome Sequencing: the Phenotypic Impact and Way Forward. Microbiol Mol Biol Rev 2019; 83:83/2/e00062-18. [PMID: 30918049 DOI: 10.1128/mmbr.00062-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Mycobacterium tuberculosis genome is more heterogenous and less genetically stable within the host than previously thought. Currently, only limited data exist on the within-host microevolution, diversity, and genetic stability of M. tuberculosis As a direct consequence, our ability to infer M. tuberculosis transmission chains and to understand the full complexity of drug resistance profiles in individual patients is limited. Furthermore, apart from the acquisition of certain drug resistance-conferring mutations, our knowledge on the function of genetic variants that emerge within a host and their phenotypic impact remains scarce. We performed a systematic literature review of whole-genome sequencing studies of serial and parallel isolates to summarize the knowledge on genetic diversity and within-host microevolution of M. tuberculosis We identified genomic loci of within-host emerged variants found across multiple studies and determined their functional relevance. We discuss important remaining knowledge gaps and finally make suggestions on the way forward.
Collapse
|
7
|
Guérillot R, Li L, Baines S, Howden B, Schultz MB, Seemann T, Monk I, Pidot SJ, Gao W, Giulieri S, Gonçalves da Silva A, D’Agata A, Tomita T, Peleg AY, Stinear TP, Howden BP. Comprehensive antibiotic-linked mutation assessment by resistance mutation sequencing (RM-seq). Genome Med 2018; 10:63. [PMID: 30165908 PMCID: PMC6117896 DOI: 10.1186/s13073-018-0572-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Mutation acquisition is a major mechanism of bacterial antibiotic resistance that remains insufficiently characterised. Here we present RM-seq, a new amplicon-based deep sequencing workflow based on a molecular barcoding technique adapted from Low Error Amplicon sequencing (LEA-seq). RM-seq allows detection and functional assessment of mutational resistance at high throughput from mixed bacterial populations. The sensitive detection of very low-frequency resistant sub-populations permits characterisation of antibiotic-linked mutational repertoires in vitro and detection of rare resistant populations during infections. Accurate quantification of resistance mutations enables phenotypic screening of mutations conferring pleiotropic phenotypes such as in vivo persistence, collateral sensitivity or cross-resistance. RM-seq will facilitate comprehensive detection, characterisation and surveillance of resistant bacterial populations ( https://github.com/rguerillot/RM-seq ).
Collapse
Affiliation(s)
- Romain Guérillot
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Lucy Li
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Sarah Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Brian Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Mark B. Schultz
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Torsten Seemann
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria Australia
| | - Ian Monk
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Wei Gao
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Stefano Giulieri
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Anders Gonçalves da Silva
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Anthony D’Agata
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Takehiro Tomita
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria Australia
- Infection and Immunity Theme, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria Australia
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria Australia
| |
Collapse
|
8
|
Hameed HMA, Islam MM, Chhotaray C, Wang C, Liu Y, Tan Y, Li X, Tan S, Delorme V, Yew WW, Liu J, Zhang T. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR- Mycobacterium tuberculosis Strains. Front Cell Infect Microbiol 2018; 8:114. [PMID: 29755957 PMCID: PMC5932416 DOI: 10.3389/fcimb.2018.00114] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is a formidable infectious disease that remains a major cause of death worldwide today. Escalating application of genomic techniques has expedited the identification of increasing number of mutations associated with drug resistance in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance becomes alarming in many parts of the world, with the daunting scenarios of multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and total drug-resistant tuberculosis (TDR-TB), due to number of resistance pathways, alongside some apparently obscure ones. Recent advances in the understanding of the molecular/ genetic basis of drug targets and drug resistance mechanisms have been steadily made. Intriguing findings through whole genome sequencing and other molecular approaches facilitate the further understanding of biology and pathology of M. tuberculosis for the development of new therapeutics to meet the immense challenge of global health.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Vincent Delorme
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Wing W Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Revisiting Activation of and Mechanism of Resistance to Compound IQG-607 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.02222-17. [PMID: 29158273 DOI: 10.1128/aac.02222-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 11/20/2022] Open
Abstract
IQG-607 is a metal complex previously reported as a promising anti-tuberculosis (TB) drug against isoniazid (INH)-resistant strains of Mycobacterium tuberculosis Unexpectedly, we found that INH-resistant clinical isolates were resistant to IQG-607. Spontaneous mutants resistant to IQG-607 were subjected to whole-genome sequencing, and all sequenced colonies carried alterations in the katG gene. The katG(S315T) mutation was sufficient to confer resistance to IQG-607 in both MIC assays and inside macrophages. Moreover, overexpression of the InhA(S94A) protein caused IQG-607's resistance.
Collapse
|
10
|
Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii. mBio 2017; 8:mBio.00166-17. [PMID: 28270580 PMCID: PMC5340869 DOI: 10.1128/mbio.00166-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease.
Collapse
|
11
|
Giulieri SG, Holmes NE, Stinear TP, Howden BP. Use of bacterial whole-genome sequencing to understand and improve the management of invasive Staphylococcus aureus infections. Expert Rev Anti Infect Ther 2016; 14:1023-1036. [PMID: 27626511 DOI: 10.1080/14787210.2016.1233815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Management of invasive Staphylococcus aureus infections is complex. Dramatic improvements in bacterial whole genome sequencing (WGS) offer new opportunities for personalising the treatment of S. aureus infections. Areas covered: We address recent achievements in S. aureus genomics, describe genetic determinants of antibiotic resistance and summarise studies that have defined molecular characteristics associated with risk and outcome of S. aureus invasive infections. Potential clinical use of WGS for resistance prediction, infection outcome stratification and management of persistent /relapsing infections is critically discussed. Expert commentary: WGS is not only providing invaluable information to track the emergence and spread of important S. aureus clones, but also allows rapid determination of resistance genotypes in the clinical environment. An evolving opportunity is to infer clinically important outcomes and optimal therapeutic approaches from widely available S. aureus genome data, with the goal of individualizing management of invasive S. aureus infections.
Collapse
Affiliation(s)
- Stefano G Giulieri
- a Microbiological Diagnostic Unit Public Health Laboratory , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,b Infectious Diseases Service , Department of Medicine, Lausanne University Hospital , Lausanne , Switzerland
| | - Natasha E Holmes
- c Infectious Diseases Department , Austin Health , Heidelberg , Australia
| | - Timothy P Stinear
- d Doherty Applied Microbial Genomics , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,e Department of Microbiology and Immunology , The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Benjamin P Howden
- a Microbiological Diagnostic Unit Public Health Laboratory , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,c Infectious Diseases Department , Austin Health , Heidelberg , Australia.,e Department of Microbiology and Immunology , The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| |
Collapse
|