1
|
Beck KL, Agarwal A, Laufer Halpin A, McDonald LC, McKay SL, Kent AG, Kaufman JH, Mukherjee V, Elkins CA, Seabolt E. De novo virulence feature discovery and risk assessment in Klebsiella pneumoniae based on microbial genome vectorization. Commun Biol 2025; 8:623. [PMID: 40246993 PMCID: PMC12006392 DOI: 10.1038/s42003-025-07678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
Bacterial pathogenicity has traditionally focused on gene-level content with experimentally confirmed functional properties. Hence, significant inferences are made based on similarity to known pathotypes and DNA-based genomic subtyping for risk. Herein, we achieved de novo prediction of human virulence in Klebsiella pneumoniae by expanding known virulence genes with spatially proximal gene discoveries linked by functional domain architectures across all prokaryotes. This approach identified gene ontology functions not typically associated with virulence sensu stricto. By leveraging machine learning models with these expanded discoveries, public genomes were assessed for virulence prediction using categorizations derived from isolation sources captured in available metadata. Performance for de novo strain-level virulence prediction achieved 0.81 F1-Score. Virulence predictions using expanded "discovered" functional genetic content were superior to that restricted to extant virulence database content. Additionally, this approach highlighted the incongruence in relying on traditional phylogenetic subtyping for categorical inferences. Our approach represents an improved deconstruction of genome-scale datasets for functional predictions and risk assessment intended to advance public health surveillance of emerging pathogens.
Collapse
Affiliation(s)
- Kristen L Beck
- AI and Cognitive Software, IBM Research, San Jose, CA, USA.
| | - Akshay Agarwal
- AI and Cognitive Software, IBM Research, San Jose, CA, USA
| | - Alison Laufer Halpin
- Division of Healthcare Quality Promotion, Centers for Disease Control, Atlanta, GA, USA
- US Public Health Service, Rockville, MD, USA
| | - L Clifford McDonald
- Division of Healthcare Quality Promotion, Centers for Disease Control, Atlanta, GA, USA
| | - Susannah L McKay
- Division of Healthcare Quality Promotion, Centers for Disease Control, Atlanta, GA, USA
| | - Alyssa G Kent
- Division of Healthcare Quality Promotion, Centers for Disease Control, Atlanta, GA, USA
| | | | | | - Christopher A Elkins
- Division of Healthcare Quality Promotion, Centers for Disease Control, Atlanta, GA, USA
| | - Edward Seabolt
- AI and Cognitive Software, IBM Research, San Jose, CA, USA
| |
Collapse
|
2
|
Liu Y, Bian C, Ma KY, Yang Y, Wang Y, Liu C, Ouyang G, Xu M, Sun J, Shao C, Chen J, Shi Q, Mu X. Reference genome provide insights into sex determination of silver aworana (Osteoglossum bicirrhosum). BMC Biol 2025; 23:29. [PMID: 39875888 PMCID: PMC11776183 DOI: 10.1186/s12915-025-02139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Silver arowana (Osteoglossum bicirrhosum) is a basal fish species with sexual monomorphism, while its sex determination mechanism has been poorly understood, posing a significant challenge to its captive breeding efforts. RESULTS We constructed two high-quality chromosome-level genome assemblies for both female and male silver arowana, with scaffold N50 values over 10 Mb. Combining re-sequencing data of 109 individuals, we identified a female-specific region, which was localized in a non-coding region, i.e., around 26-kb upstream of foxl2 gene (encoding forkhead box L2). Its strong interaction with the neighboring foxl2 on the same chromosome suggests foxl2 as a candidate sex-related gene in silver arowana. We subsequently propose a complex gene network in the sex determination process of silver arowana, with foxl2 acting as the central contributor. Transcriptome sequencing of gonads support our hypothesis that the regulation of foxl2 can be influenced by the spatial proximity of the female-specific fragment, thereby promoting ovarian function or inhibiting testicular function to stimulate gonadal differentiation. Furthermore, we found the sex chromosomes to be homomorphic with a potentially recent origin, as a linkage disequilibrium analysis proved minor recombination suppression. CONCLUSIONS These results taken together serve as a crucial foundation for conducting extensive investigations on the evolution and differentiation of sex-determining mechanisms, as well as the emergence and development of sex chromosomes in various fishes.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ka Yan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Guochang Ouyang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shanghai Ocean University, Shanghai, China
| | - Meng Xu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinhui Sun
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Changwei Shao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiehu Chen
- Science Corporation of Gene (SCGene), Guangzhou, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Aguilar M, Isla A, Barrientos CA, Flores-Martin SN, Blanco JA, Enríquez R, Figueroa J, Yañez AJ. Genomic and proteomic aspects of p57 protein from Renibacterium salmoninarum: Characteristics in virulence patterns. Microb Pathog 2023; 174:105932. [PMID: 36473669 DOI: 10.1016/j.micpath.2022.105932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Renibacterium salmoninarum is one of the oldest known fish bacterial pathogens. This Gram-positive bacterium is the causative agent of Bacterial Kidney Disease (BKD), a chronic infection that primarily infects salmonids at low temperatures. Externally, infected fish may show exophthalmos, skin blisters, ulcerations, and hemorrhages at the base of the fins and along the lateral line. Internally, the kidney, heart, spleen, and liver may show signs of inflammation. The best characterized virulence factor of R. salmoninarum is p57, a 57 kDa protein located on the bacterial cell surface and secreted into surrounding fish tissue. The p57 protein in fish is the main mediator in suppressing the immune system, reducing antibody production, and intervening in cytokine activity. In this review, we will discuss aspects such as single nucleotide polymorphisms (SNPs) that modify the DNA sequence, variants in the number of copies of MSA genes, physical-chemical properties of the signal peptides, and the limited iron conditions that can modify p57 expression and increase the virulence of R. salmoninarum.
Collapse
Affiliation(s)
- Marcelo Aguilar
- Laboratorio de Diagnostico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Adolfo Isla
- Laboratorio de Diagnostico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia, Chile; Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Claudia A Barrientos
- Laboratorio de Diagnostico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sandra N Flores-Martin
- Laboratorio de Diagnostico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jose A Blanco
- Laboratorio de Diagnostico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ricardo Enríquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Jaime Figueroa
- Center for Aquaculture Research (INCAR), Concepción, Chile; Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro J Yañez
- Laboratorio de Diagnostico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Center for Aquaculture Research (INCAR), Concepción, Chile.
| |
Collapse
|
4
|
Host–Pathogen Interactions of Marine Gram-Positive Bacteria. BIOLOGY 2022; 11:biology11091316. [PMID: 36138795 PMCID: PMC9495620 DOI: 10.3390/biology11091316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Complex interactions between marine Gram-positive pathogens and fish hosts in the marine environment can result in diseases of economically important finfish, which cause economic losses in the aquaculture industry. Understanding how these pathogens interact with the fish host and generate disease will contribute to efficient prophylactic measures and treatments. To our knowledge, there are no systematic reviews on marine Gram-positive pathogens. Therefore, here we reviewed the host–pathogen interactions of marine Gram-positive pathogens from the pathogen-centric and host-centric points of view. Abstract Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish–host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host–pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host–pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune response. Marine Gram-positive pathogens have a unique set of virulence factors that facilitate adhesion (e.g., adhesins, hemagglutination activity, sortase, and capsules), invasion (e.g., toxins, hemolysins/cytolysins, the type VII secretion system, and immune-suppressive proteins), evasion (e.g., free radical quenching, actin-based motility, and the inhibition of phagolysosomal fusion), and proliferation and survival (e.g., heme utilization and siderophore-mediated iron acquisition systems) in the fish host. After infection, the fish host initiates specific innate and adaptive immune responses according to the extracellular or intracellular mechanism of infection. Although efforts have continued to be made in understanding the complex interplay at the host–pathogen interface, integrated omics-based investigations targeting host–pathogen–marine environment interactions hold promise for future research.
Collapse
|
5
|
Kroniger T, Flender D, Schlüter R, Köllner B, Trautwein-Schult A, Becher D. Proteome analysis of the Gram-positive fish pathogen Renibacterium salmoninarum reveals putative role of membrane vesicles in virulence. Sci Rep 2022; 12:3003. [PMID: 35194033 PMCID: PMC8863785 DOI: 10.1038/s41598-022-06130-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial kidney disease (BKD) is a chronic bacterial disease affecting both wild and farmed salmonids. The causative agent for BKD is the Gram-positive fish pathogen Renibacterium salmoninarum. As treatment and prevention of BKD have proven to be difficult, it is important to know and identify the key bacterial proteins that interact with the host. We used subcellular fractionation to report semi-quantitative data for the cytosolic, membrane, extracellular, and membrane vesicle (MV) proteome of R. salmoninarum. These data can aid as a backbone for more targeted experiments regarding the development of new drugs for the treatment of BKD. Further analysis was focused on the MV proteome, where both major immunosuppressive proteins P57/Msa and P22 and proteins involved in bacterial adhesion were found in high abundance. Interestingly, the P22 protein was relatively enriched only in the extracellular and MV fraction, implicating that MVs may play a role in host–pathogen interaction. Compared to the other subcellular fractions, the MVs were also relatively enriched in lipoproteins and all four cell wall hydrolases belonging to the New Lipoprotein C/Protein of 60 kDa (NlpC/P60) family were detected, suggesting an involvement in the formation of the MVs.
Collapse
Affiliation(s)
- Tobias Kroniger
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489, Greifswald, Germany
| | - Daniel Flender
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, 17489, Greifswald, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493, Greifswald - Isle of Riems, Germany
| | - Anke Trautwein-Schult
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
6
|
Wyka S, Mondo S, Liu M, Nalam V, Broders K. A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. PLoS One 2022; 17:e0263496. [PMID: 35143550 PMCID: PMC8830672 DOI: 10.1371/journal.pone.0263496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Pangenome analyses are increasingly being utilized to study the evolution of eukaryotic organisms. While pangenomes can provide insight into polymorphic gene content, inferences about the ecological and adaptive potential of such organisms also need to be accompanied by additional supportive genomic analyses. In this study we constructed a pangenome of Claviceps purpurea from 24 genomes and examined the positive selection and recombination landscape of an economically important fungal organism for pharmacology and agricultural research. Together, these analyses revealed that C. purpurea has a relatively large accessory genome (~ 38%), high recombination rates (ρ = 0.044), and transposon mediated gene duplication. However, due to observations of relatively low transposable element (TE) content (8.8%) and a lack of variability in genome sizes, prolific TE expansion may be controlled by frequent recombination. We additionally identified that within the ergoline biosynthetic cluster the lpsA1 and lpsA2 were the result of a recombination event. However, the high recombination rates observed in C. purpurea may be influencing an overall trend of purifying selection across the genome. These results showcase the use of selection and recombination landscapes to identify mechanisms contributing to pangenome structure and primary factors influencing the evolution of an organism.
Collapse
Affiliation(s)
- Stephen Wyka
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Stephen Mondo
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
- United States Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Miao Liu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Vamsi Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kirk Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, United States of America
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
- * E-mail:
| |
Collapse
|
7
|
Rodriguez AM, Urrea DA, Prada CF. Helicobacter pylori virulence factors: relationship between genetic variability and phylogeographic origin. PeerJ 2021; 9:e12272. [PMID: 34900406 PMCID: PMC8628625 DOI: 10.7717/peerj.12272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 01/18/2023] Open
Abstract
Background Helicobacter pylori is a pathogenic bacteria that colonize the gastrointestinal tract from human stomachs and causes diseases including gastritis, peptic ulcers, gastric lymphoma (MALT), and gastric cancer, with a higher prevalence in developing countries. Its high genetic diversity among strains is caused by a high mutation rate, observing virulence factors (VFs) variations in different geographic lineages. This study aimed to postulate the genetic variability associated with virulence factors present in the Helicobacter pylori strains, to identify the relationship of these genes with their phylogeographic origin. Methods The complete genomes of 135 strains available in NCBI, from different population origins, were analyzed using bioinformatics tools, identifying a high rate; as well as reorganization events in 87 virulence factor genes, divided into seven functional groups, to determine changes in position, number of copies, nucleotide identity and size, contrasting them with their geographical lineage and pathogenic phenotype. Results Bioinformatics analyses show a high rate of gene annotation errors in VF. Analysis of genetic variability of VFs shown that there is not a direct relationship between the reorganization and geographic lineage. However, regarding the pathogenic phenotype demonstrated in the analysis of many copies, size, and similarity when dividing the strains that possess and not the cag pathogenicity island (cagPAI), having a higher risk of developing gastritis and peptic ulcer was evidenced. Our data has shown that the analysis of the overall genetic variability of all VFs present in each strain of H. pylori is key information in understanding its pathogenic behavior.
Collapse
Affiliation(s)
- Aura M Rodriguez
- Grupo de Investigación de Biología y Ecología de Artrópodos. Facultad de Ciencias, Universidad del Tolima, Ibague, Tolima, Colombia
| | - Daniel A Urrea
- Laboratorio de Investigaciones en Parasitología Tropical. Facultad de Ciencias, Universidad del Tolima, Ibague, Tolima, Colombia
| | - Carlos F Prada
- Grupo de Investigación de Biología y Ecología de Artrópodos. Facultad de Ciencias, Universidad del Tolima, Ibague, Tolima, Colombia
| |
Collapse
|
8
|
Gnanagobal H, Cao T, Hossain A, Dang M, Hall JR, Kumar S, Van Cuong D, Boyce D, Santander J. Lumpfish ( Cyclopterus lumpus) Is Susceptible to Renibacterium salmoninarum Infection and Induces Cell-Mediated Immunity in the Chronic Stage. Front Immunol 2021; 12:733266. [PMID: 34880856 PMCID: PMC8645940 DOI: 10.3389/fimmu.2021.733266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023] Open
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater. Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to R. salmoninarum, and it can transfer the infection to other fish species. Although BKD outbreaks have not been reported in lumpfish, its susceptibility and immune response to R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune response of lumpfish to R. salmoninarum infection. Groups of lumpfish were intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells dose-1) or PBS (control). R. salmoninarum infection kinetics and mortality were followed for 98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%, 93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50 dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1β, il8a, il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb, mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a, cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98 dpi suggests induction of cell-mediated immune response. This study showed that R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and caused a chronic infection, enhancing cell-mediated adaptive immune response.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Bio-systems Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Doan Van Cuong
- Southern Monitoring Center for Aquaculture Environment and Epidemic (MCE), Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Sterken MG, Thorpe P, Goverse A, Smant G, Helder J. Comparative genomics of two inbred lines of the potato cyst nematode Globodera rostochiensis reveals disparate effector family-specific diversification patterns. BMC Genomics 2021; 22:611. [PMID: 34380421 PMCID: PMC8359618 DOI: 10.1186/s12864-021-07914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value. Hence, resistant potato varieties are used worldwide in a poorly informed manner. RESULTS We generated two novel reference genomes of G. rostochiensis inbred lines derived from a Ro1 and a Ro5 population. These genome sequences comprise 173 and 189 scaffolds respectively, marking a ≈ 24-fold reduction in fragmentation as compared to the current reference genome. We provide copy number variations for 19 effector families. Four dorsal gland effector families were investigated in more detail. SPRYSECs, known to be implicated in plant defence suppression, constitute by far the most diversified family studied herein with 60 and 99 variants in Ro1 and Ro5 distributed over 18 and 26 scaffolds. In contrast, CLEs, effectors involved in feeding site induction, show strong physical clustering. The 10 and 16 variants cluster on respectively 2 and 1 scaffolds. Given that pathotypes are defined by their effectoromes, we pinpoint the disparate nature of the contributing effector families in terms of sequence diversification and loss and gain of variants. CONCLUSIONS Two novel reference genomes allow for nearly complete inventories of effector diversification and physical organisation within and between pathotypes. Combined with insights we provide on effector family-specific diversification patterns, this constitutes a basis for an effectorome-based virulence scheme for this notorious pathogen.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands.,Solynta, Dreijenlaan 2, 6703 HA, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological Sciences, University of St. Andrews, North Haugh, St Andrews, United Kingdom
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Jugas R, Sedlar K, Vitek M, Nykrynova M, Barton V, Bezdicek M, Lengerova M, Skutkova H. CNproScan: Hybrid CNV detection for bacterial genomes. Genomics 2021; 113:3103-3111. [PMID: 34224809 DOI: 10.1016/j.ygeno.2021.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/13/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Discovering copy number variation (CNV) in bacteria is not in the spotlight compared to the attention focused on CNV detection in eukaryotes. However, challenges arising from bacterial drug resistance bring further interest to the topic of CNV and its role in drug resistance. General CNV detection methods do not consider bacteria's features and there is space to improve detection accuracy. Here, we present a CNV detection method called CNproScan focused on bacterial genomes. CNproScan implements a hybrid approach and other bacteria-focused features and depends only on NGS data. We benchmarked our method and compared it to the previously published methods and we can resolve to achieve a higher detection rate together with providing other beneficial features, such as CNV classification. Compared with other methods, CNproScan can detect much shorter CNV events.
Collapse
Affiliation(s)
- Robin Jugas
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic.
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Martin Vitek
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Marketa Nykrynova
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Vojtech Barton
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Martina Lengerova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Helena Skutkova
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
11
|
Renibacterium salmoninarum-The Causative Agent of Bacterial Kidney Disease in Salmonid Fish. Pathogens 2020; 9:pathogens9100845. [PMID: 33076564 PMCID: PMC7602803 DOI: 10.3390/pathogens9100845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Renibacterium salmoninarum is one of the oldest known bacterial pathogens of fish. This Gram-positive bacterium is the causative agent of bacterial kidney disease, a chronic infection that is mostly known to infect salmonid fish at low temperatures. Externally, infected fish can display exophthalmia as well as blebs on the skin and ulcerations alongside haemorrhages at the base of the fins and alongside the lateral line. Internally, the kidney, heart, spleen and liver can show signs of swelling. Granulomas can be seen on various internal organs, as can haemorrhages, and the organs can be covered with a false membrane. Ascites can also accumulate in the abdominal cavity. The bacterium is generally cultivated on specialized media such as kidney disease medium-1 (KDM-1), KDM-2 and selective kidney disease medium (SKDM), and a diagnostic is performed using molecular tools such as PCRs or real-time quantitative PCRs (RT-qPCRs). Several virulence mechanisms have been identified in R. salmoninarum, in particular the protein p57 that is known to play a role in both agglutination and immunosuppression of the host’s defense mechanisms. Control of the disease is difficult; the presence of asymptomatic carriers complicates the eradication of the disease, as does the ability of the bacterium to gain entrance inside the eggs. Bacterin-killed vaccines have proven to be of doubtful efficacy in controlling the disease, and even more recent application of a virulent environmental relative of R. salmoninarum is of limited efficacy. Treatment by antibiotics such as erythromycin, azithromycin and enrofloxacin can be effective but it is slow and requires prolonged treatment. Moreover, antibiotic-resistant strains have been reported. Despite being known for a long time, there is still much to be discovered about R. salmoninarum, notably regarding its virulence mechanisms and its vaccine potential. Consequently, these gaps in knowledge continue to hinder control of this bacterial disease in aquaculture settings.
Collapse
|
12
|
Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol 2020; 18:12. [PMID: 32046716 PMCID: PMC7014611 DOI: 10.1186/s12915-020-0744-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The gene content of a species largely governs its ecological interactions and adaptive potential. A species is therefore defined by both core genes shared between all individuals and accessory genes segregating presence-absence variation. There is growing evidence that eukaryotes, similar to bacteria, show intra-specific variability in gene content. However, it remains largely unknown how functionally relevant such a pangenome structure is for eukaryotes and what mechanisms underlie the emergence of highly polymorphic genome structures. RESULTS Here, we establish a reference-quality pangenome of a fungal pathogen of wheat based on 19 complete genomes from isolates sampled across six continents. Zymoseptoria tritici causes substantial worldwide losses to wheat production due to rapidly evolved tolerance to fungicides and evasion of host resistance. We performed transcriptome-assisted annotations of each genome to construct a global pangenome. Major chromosomal rearrangements are segregating within the species and underlie extensive gene presence-absence variation. Conserved orthogroups account for only ~ 60% of the species pangenome. Investigating gene functions, we find that the accessory genome is enriched for pathogenesis-related functions and encodes genes involved in metabolite production, host tissue degradation and manipulation of the immune system. De novo transposon annotation of the 19 complete genomes shows that the highly diverse chromosomal structure is tightly associated with transposable element content. Furthermore, transposable element expansions likely underlie recent genome expansions within the species. CONCLUSIONS Taken together, our work establishes a highly complex eukaryotic pangenome providing an unprecedented toolbox to study how pangenome structure impacts crop-pathogen interactions.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
13
|
Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol 2020; 18:12. [PMID: 32046716 DOI: 10.1101/803098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The gene content of a species largely governs its ecological interactions and adaptive potential. A species is therefore defined by both core genes shared between all individuals and accessory genes segregating presence-absence variation. There is growing evidence that eukaryotes, similar to bacteria, show intra-specific variability in gene content. However, it remains largely unknown how functionally relevant such a pangenome structure is for eukaryotes and what mechanisms underlie the emergence of highly polymorphic genome structures. RESULTS Here, we establish a reference-quality pangenome of a fungal pathogen of wheat based on 19 complete genomes from isolates sampled across six continents. Zymoseptoria tritici causes substantial worldwide losses to wheat production due to rapidly evolved tolerance to fungicides and evasion of host resistance. We performed transcriptome-assisted annotations of each genome to construct a global pangenome. Major chromosomal rearrangements are segregating within the species and underlie extensive gene presence-absence variation. Conserved orthogroups account for only ~ 60% of the species pangenome. Investigating gene functions, we find that the accessory genome is enriched for pathogenesis-related functions and encodes genes involved in metabolite production, host tissue degradation and manipulation of the immune system. De novo transposon annotation of the 19 complete genomes shows that the highly diverse chromosomal structure is tightly associated with transposable element content. Furthermore, transposable element expansions likely underlie recent genome expansions within the species. CONCLUSIONS Taken together, our work establishes a highly complex eukaryotic pangenome providing an unprecedented toolbox to study how pangenome structure impacts crop-pathogen interactions.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
14
|
Shidore T, Zeng Q, Triplett LR. Survey of Toxin⁻Antitoxin Systems in Erwinia amylovora Reveals Insights into Diversity and Functional Specificity. Toxins (Basel) 2019; 11:toxins11040206. [PMID: 30959879 PMCID: PMC6521040 DOI: 10.3390/toxins11040206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Toxin–antitoxin (TA) systems are diverse genetic modules with demonstrated roles in plasmid stability, stress management, biofilm formation and antibiotic persistence. However, relatively little is known about their functional significance in plant pathogens. In this study we characterize type II and IV TA systems in the economically important plant pathogen Erwinia amylovora. Hidden Markov Model (HMM) and BLAST-based programs were used to predict the identity and distribution of putative TA systems among sequenced genomes of E. amylovora and other plant-associated Erwinia spp. Of six conserved TA systems tested for function from E. amylovora, three (CbtA/CbeA, ParE/RHH and Doc/PhD) were validated as functional. CbtA was toxic to E. amylovora, but not to Escherichia coli. While the E. coli homolog of CbtA elicits the formation of lemon-shaped cells upon overexpression and targets cytoskeletal proteins FtsZ and MreB, E. amylovora CbtA led to cell elongation and did not interact with these cytoskeletal proteins. Phylogenetic analysis revealed that E. amylovora CbtA belongs to a distinct clade from the CbtA of pathogenic E. coli. This study expands the repertoire of experimentally validated TA systems in plant pathogenic bacteria, and suggests that the E. amylovora homolog of CbtA is functionally distinct from that of E. coli.
Collapse
Affiliation(s)
- Teja Shidore
- Department of Plant Pathology and Ecology, the Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| | - Quan Zeng
- Department of Plant Pathology and Ecology, the Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, the Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| |
Collapse
|
15
|
Thilliez GJA, Armstrong MR, Lim T, Baker K, Jouet A, Ward B, van Oosterhout C, Jones JDG, Huitema E, Birch PRJ, Hein I. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. THE NEW PHYTOLOGIST 2019; 221:1634-1648. [PMID: 30288743 PMCID: PMC6492278 DOI: 10.1111/nph.15441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 05/11/2023]
Abstract
The oomycete pathogens Phytophthora infestans and P. capsici cause significant crop losses world-wide, threatening food security. In each case, pathogenicity factors, called RXLR effectors, contribute to virulence. Some RXLRs are perceived by resistance proteins to trigger host immunity, but our understanding of the demographic processes and adaptive evolution of pathogen virulence remains poor. Here, we describe PenSeq, a highly efficient enrichment sequencing approach for genes encoding pathogenicity determinants which, as shown for the infamous potato blight pathogen Phytophthora infestans, make up < 1% of the entire genome. PenSeq facilitates the characterization of allelic diversity in pathogen effectors, enabling evolutionary and population genomic analyses of Phytophthora species. Furthermore, PenSeq enables the massively parallel identification of presence/absence variations and sequence polymorphisms in key pathogen genes, which is a prerequisite for the efficient deployment of host resistance genes. PenSeq represents a cost-effective alternative to whole-genome sequencing and addresses crucial limitations of current plant pathogen population studies, which are often based on selectively neutral markers and consequently have limited utility in the analysis of adaptive evolution. The approach can be adapted to diverse microbes and pathogens.
Collapse
Affiliation(s)
- Gaetan J. A. Thilliez
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Miles R. Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Tze‐Yin Lim
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Agathe Jouet
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7GJUK
| | - Ben Ward
- The Earlham InstituteNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - Edgar Huitema
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| |
Collapse
|