1
|
Muskhelishvili G, Nasser W, Reverchon S, Travers A. DNA as a Double-Coding Device for Information Conversion and Organization of a Self-Referential Unity. DNA 2024; 4:473-493. [PMID: 40098770 PMCID: PMC7617498 DOI: 10.3390/dna4040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Living systems are capable on the one hand of eliciting a coordinated response to changing environments (also known as adaptation), and on the other hand, they are capable of reproducing themselves. Notably, adaptation to environmental change requires the monitoring of the surroundings, while reproduction requires monitoring oneself. These two tasks appear separate and make use of different sources of information. Yet, both the process of adaptation as well as that of reproduction are inextricably coupled to alterations in genomic DNA expression, while a cell behaves as an indivisible unity in which apparently independent processes and mechanisms are both integrated and coordinated. We argue that at the most basic level, this integration is enabled by the unique property of the DNA to act as a double coding device harboring two logically distinct types of information. We review biological systems of different complexities and infer that the inter-conversion of these two distinct types of DNA information represents a fundamental self-referential device underlying both systemic integration and coordinated adaptive responses.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences and Biotechnology, Agricultural University of Georgia, 0159Tbilisi, Georgia
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon 1, F-69622Villeurbanne, France
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon 1, F-69622Villeurbanne, France
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CambridgeCB2 0QH, UK
| |
Collapse
|
2
|
Muskhelishvili G, Sobetzko P, Travers A. Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization-A Timing Chain for the Bacterial Growth Cycle? Biomolecules 2022; 12:biom12060831. [PMID: 35740956 PMCID: PMC9221221 DOI: 10.3390/biom12060831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
In this article we describe the bacterial growth cycle as a closed, self-reproducing, or autopoietic circuit, reestablishing the physiological state of stationary cells initially inoculated in the growth medium. In batch culture, this process of self-reproduction is associated with the gradual decline in available metabolic energy and corresponding change in the physiological state of the population as a function of "travelled distance" along the autopoietic path. We argue that this directional alteration of cell physiology is both reflected in and supported by sequential gene expression along the chromosomal OriC-Ter axis. We propose that during the E. coli growth cycle, the spatiotemporal order of gene expression is established by coupling the temporal gradient of supercoiling energy to the spatial gradient of DNA thermodynamic stability along the chromosomal OriC-Ter axis.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Biology Program, Agricultural University of Georgia, 0159 Tbilisi, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Synmikro, Loewe Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| |
Collapse
|
3
|
Pozdeev G, Beckett MC, Mogre A, Thomson NR, Dorman CJ. Reciprocally rewiring and repositioning the Integration Host Factor (IHF) subunit genes in Salmonella enterica serovar Typhimurium: impacts on physiology and virulence. Microb Genom 2022; 8. [PMID: 35166652 PMCID: PMC8942017 DOI: 10.1099/mgen.0.000768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Integration Host Factor (IHF) is a heterodimeric nucleoid-associated protein that plays roles in bacterial nucleoid architecture and genome-wide gene regulation. The ihfA and ihfB genes encode the subunits and are located 350 kbp apart, in the Right replichore of the Salmonella chromosome. IHF is composed of one IhfA and one IhfB subunit. Despite this 1 : 1 stoichiometry, MS revealed that IhfB is produced in 2-fold excess over IhfA. We re-engineered Salmonella to exchange reciprocally the protein-coding regions of ihfA and ihfB, such that each relocated protein-encoding region was driven by the expression signals of the other's gene. MS showed that in this 'rewired' strain, IhfA is produced in excess over IhfB, correlating with enhanced stability of the hybrid ihfB-ihfA mRNA that was expressed from the ihfB promoter. Nevertheless, the rewired strain grew at a similar rate to the wild-type and was similar in competitive fitness. However, compared to the wild-type, it was less motile, had growth-phase-specific reductions in SPI-1 and SPI-2 gene expression, and was engulfed at a higher rate by RAW macrophage. Our data show that while exchanging the physical locations of its ihf genes and the rewiring of their regulatory circuitry are well tolerated in Salmonella, genes involved in the production of type 3 secretion systems exhibit dysregulation accompanied by altered phenotypes.
Collapse
Affiliation(s)
- German Pozdeev
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Aalap Mogre
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
Kröger C, MacKenzie KD, Alshabib EY, Kirzinger MWB, Suchan DM, Chao TC, Akulova V, Miranda-CasoLuengo AA, Monzon VA, Conway T, Sivasankaran SK, Hinton JCD, Hokamp K, Cameron ADS. The primary transcriptome, small RNAs and regulation of antimicrobial resistance in Acinetobacter baumannii ATCC 17978. Nucleic Acids Res 2018; 46:9684-9698. [PMID: 29986115 PMCID: PMC6182133 DOI: 10.1093/nar/gky603] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
We present the first high-resolution determination of transcriptome architecture in the priority pathogen Acinetobacter baumannii. Pooled RNA from 16 laboratory conditions was used for differential RNA-seq (dRNA-seq) to identify 3731 transcriptional start sites (TSS) and 110 small RNAs, including the first identification in A. baumannii of sRNAs encoded at the 3' end of coding genes. Most sRNAs were conserved among sequenced A. baumannii genomes, but were only weakly conserved or absent in other Acinetobacter species. Single nucleotide mapping of TSS enabled prediction of -10 and -35 RNA polymerase binding sites and revealed an unprecedented base preference at position +2 that hints at an unrecognized transcriptional regulatory mechanism. To apply functional genomics to the problem of antimicrobial resistance, we dissected the transcriptional regulation of the drug efflux pump responsible for chloramphenicol resistance, craA. The two craA promoters were both down-regulated >1000-fold when cells were shifted to nutrient limited medium. This conditional down-regulation of craA expression renders cells sensitive to chloramphenicol, a highly effective antibiotic for the treatment of multidrug resistant infections. An online interface that facilitates open data access and visualization is provided as 'AcinetoCom' (http://bioinf.gen.tcd.ie/acinetocom/).
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Keith D MacKenzie
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ebtihal Y Alshabib
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Morgan W B Kirzinger
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Danae M Suchan
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Valentyna Akulova
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Aleksandra A Miranda-CasoLuengo
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Vivian A Monzon
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sathesh K Sivasankaran
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Karsten Hokamp
- Department of Genetics, School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew D S Cameron
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
5
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|