1
|
Wang Y, You H, Kong YH, Sun C, Wu LH, Kim SG, Lee JS, Xu L, Xu XW. Genomic-based taxonomic classification of the order Sphingomonadales. Int J Syst Evol Microbiol 2025; 75. [PMID: 40372931 DOI: 10.1099/ijsem.0.006769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
The order Sphingomonadales strains are globally distributed in various biomes and are renowned for their biodegradable and biosynthesis capabilities. At present, it consists of 4 families and 49 genera making it the third largest order within the class Alphaproteobacteria. However, their taxonomy remains complex, especially due to polyphyly in the family Sphingomonadaceae. In this study, we collected 429 Sphingomonadales type strain genomes, reconstructed robust phylogenomic relationships, and proposed delineation thresholds at the genus and family levels based on average amino acid identities (AAI) and evolutionary distances (ED). Based on the maximum-likelihood and Bayesian phylogenomic trees reconstructed by two molecular sets determined by orthologous sequence identity and the Genome Taxonomy Database, the consensus degree values were all higher than 90%, revealing that those phylogenomic trees had similar topological structures. By confirming monophyletic taxa and determining stable nodes, we reclassified the order Sphingomonadales into thirteen families including nine novel ones. AAI calculations indicated that the average intra-family AAI values ranged from 0.62 to 0.84, while inter-family ones were 0.51 to 0.60. ED summaries demonstrated that the average and median intra-family ED values were 0.16 to 0.57, and inter-family ones ranged from 0.50 to 1.22. Comparisons of AAI and ED values calculated by using genomic and phylogenetic analyses supported that those 13 families were significantly separated with p values < 2.2×10-16. Thus, it was speculated that the AAI and ED thresholds for distinguishing different families were <0.6 and >0.5, respectively. Additionally, we reclassified 163 species into new genera with their phylogenetic topologies, according to the previous genus AAI and ED boundaries of 0.7 and 0.4. Our study is the first genomic-based study of the order Sphingomonadales and will promote further insights into the evolution of this order.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Hao You
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Yan-Hui Kong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin-Huan Wu
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, PR China
| | - Song-Gun Kim
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Jung-Sook Lee
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue-Wei Xu
- National Deep Sea Center, Ministry of Natural Resources, Qingdao 266237, PR China
| |
Collapse
|
2
|
Wang Y, You H, Bu YX, Zhou P, Xu L, Fu GY, Xu XW. Qipengyuania benthica sp. nov. and Qipengyuania profundimaris sp. nov., two novel Erythrobacteraceae members isolated from deep-sea environments. Int J Syst Evol Microbiol 2024; 74. [PMID: 38546450 DOI: 10.1099/ijsem.0.006313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Two Gram-stain-negative, rod-shaped and non-motile strains, designated as DY56-A-20T and G39T, were isolated from deep-sea sediment of the Pacific Ocean and deep-sea seawater of the Indian Ocean, respectively. Strain DY56-A-20T was found to grow at 15-37 °C (optimum, 28 °C), at pH 6.0-10.0 (optimum, pH 6.5-7.0) and in 0.5-6.0 % (w/v) NaCl (optimum, 1.0-2.0 %), while strain G39T was found to grow at 10-42 °C (optimum, 35-40 °C), at pH 5.5-10.0 (optimum, pH 6.5-7.0) and in 0-12.0 % (w/v) NaCl (optimum, 1.0-2.0 %). The 16S rRNA gene sequence identity analysis indicated that strain DY56-A-20T had the highest sequence identity with Qipengyuania marisflavi KEM-5T (97.6 %), while strain G39T displayed the highest sequence identity with Qipengyuania citrea H150T (98.8 %). The phylogenomic reconstruction indicated that both strains formed independent clades within the genus Qipengyuania. The digital DNA-DNA hybridization and average nucleotide identity values between strains DY56-A-20T/G39T and Qipengyuania/Erythrobacter type strains were 17.8-23.8 % and 70.7-81.1 %, respectively, which are below species delineation thresholds. The genome DNA G+C contents were 65.0 and 63.5 mol% for strains DY56-A-20T and G39T, respectively. The predominant cellular fatty acids (>10 %) of strain DY56-A-20T were C17 : 1 ω6c, summed feature 8 and summed feature 3, and the major cellular fatty acids of strain G39T were C17 : 1 ω6c and summed feature 8. The major polar lipids in both strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and an unidentified polar lipid. The only respiratory quinone present in both strains was ubiquinone-10. Based on those genotypic and phenotypic results, the two strains represent two novel species belonging to the genus Qipengyuania, for which the names Qipengyuania benthica sp. nov. and Qipengyuania profundimaris sp. nov. are proposed. The type strain of Q. benthica is DY56-A-20T (=MCCC M27941T=KCTC 92309T), and the type strain of Q. profundimaris is G39T (=MCCC M30353T=KCTC 8208T).
Collapse
Affiliation(s)
- Yuan Wang
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Hao You
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Yu-Xin Bu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Peng Zhou
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Ge-Yi Fu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| |
Collapse
|
3
|
Hall BW, Kontur WS, Neri JC, Gille DM, Noguera DR, Donohue TJ. Production of carotenoids from aromatics and pretreated lignocellulosic biomass by Novosphingobium aromaticivorans. Appl Environ Microbiol 2023; 89:e0126823. [PMID: 38014958 PMCID: PMC10734531 DOI: 10.1128/aem.01268-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE There is economic and environmental interest in generating commodity chemicals from renewable resources, such as lignocellulosic biomass, that can substitute for chemicals derived from fossil fuels. The bacterium Novosphingobium aromaticivorans is a promising microbial platform for producing commodity chemicals from lignocellulosic biomass because it can produce these from compounds in pretreated lignocellulosic biomass, which many industrial microbial catalysts cannot metabolize. Here, we show that N. aromaticivorans can be engineered to produce several valuable carotenoids. We also show that engineered N. aromaticivorans strains can produce these lipophilic chemicals concurrently with the extracellular commodity chemical 2-pyrone-4,6-dicarboxylic acid when grown in a complex liquor obtained from alkaline pretreated lignocellulosic biomass. Concurrent microbial production of valuable intra- and extracellular products can increase the economic value generated from the conversion of lignocellulosic biomass-derived compounds into commodity chemicals and facilitate the separation of water- and membrane-soluble products.
Collapse
Affiliation(s)
- Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Wayne S. Kontur
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeanette C. Neri
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Derek M. Gille
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Jiang L, Peng Y, Kim KH, Jeon D, Choe H, Han AR, Kim CY, Lee J. Jeongeuplla avenae gen. nov., sp. nov., a novel β-carotene-producing bacterium that alleviates salinity stress in Arabidopsis. Front Microbiol 2023; 14:1265308. [PMID: 38125566 PMCID: PMC10731981 DOI: 10.3389/fmicb.2023.1265308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
A novel endophytic bacterium, designated DY-R2A-6T, was isolated from oat (Avena sativa L.) seeds and found to produces β-carotene. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DY-R2A-6T had 96.3% similarity with Jiella aquimaris LZB041T, 96.0% similarity with Aurantimonas aggregate R14M6T and Aureimonas frigidaquae JCM 14755T, and less than 95.8% similarity with other genera in the family Aurantimonadaceae. The complete genome of strain DY-R2A-6T comprised 5,929,370 base pairs, consisting of one full chromosome (5,909,198 bp) and one plasmid (20,172 bp), with a G + C content was 69.1%. The overall genome-related index (OGRI), including digital DNA-DNA hybridization (<20.5%), ANI (<79.2%), and AAI (<64.2%) values, all fell below the thresholds set for novel genera. The major cellular fatty acids (>10%) of strain DY-R2A-6T were C16:0, C19:0 cyclo ω8c, and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Ubiquinone-10 was the main respiratory quinone. We identified the gene cluster responsible for carotenoid biosynthesis in the genome and found that the pink-pigment produced by strain DY-R2A-6T is β-carotene. In experiment with Arabidopsis seedlings, co-cultivation with strain DY-R2A-6T led to a 1.4-fold increase in plant biomass and chlorophyll content under salt stress conditions, demonstrating its capacity to enhance salt stress tolerance in plants. Moreover, external application of β-carotene to Arabidopsis seedlings under salt stress conditions also mitigated the stress significantly. Based on these findings, strain DY-R2A-6T is proposed to represent a novel genus and species in the family Aurantimonadaceae, named Jeongeuplla avenae gen. nov., sp. nov. The type strain is DY-R2A-6T (= KCTC 82985T = GDMCC 1.3014T). This study not only identified a new taxon but also utilized genome analysis to predict and confirm the production of β-carotene by strain DY-R2A-6T. It also demonstrated the ability of this strain to enhance salt stress tolerance in plants, suggesting potential application in agriculture to mitigate environmental stress in crops.
Collapse
Affiliation(s)
- Lingmin Jiang
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Yuxin Peng
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ki-Hyun Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Doeun Jeon
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Hanna Choe
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Zhang T, Grube M, Wei X. Host selection tendency of key microbiota in arid desert lichen crusts. IMETA 2023; 2:e138. [PMID: 38868215 PMCID: PMC10989926 DOI: 10.1002/imt2.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 06/14/2024]
Abstract
Lichen genus Endocarpon in biological soil crust form was chosen as a model to investigate the bacterial communities for the first time across four vertically distinct strata. Key bacterial microbiota in lichen thallus were discovered, which were gradually filtered and mainly derived from the crust soil, with clear host selection tendency. The study provided key information to better understand the homeostasis maintenance mechanism of the lichen symbiont and community assembly of desert lichen crust.
Collapse
Affiliation(s)
- Ting‐Ting Zhang
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Martin Grube
- Institute of BiologyUniversity of GrazGrazAustria
| | - Xin‐Li Wei
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Jiang L, Seo J, Peng Y, Jeon D, Lee JH, Kim CY, Lee J. A nostoxanthin-producing bacterium, Sphingomonas nostoxanthinifaciens sp. nov., alleviates the salt stress of Arabidopsis seedlings by scavenging of reactive oxygen species. Front Microbiol 2023; 14:1101150. [PMID: 36846770 PMCID: PMC9950776 DOI: 10.3389/fmicb.2023.1101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
A novel, nostoxanthin-producing, endophytic bacterium, designated as AK-PDB1-5T, was isolated from the needle-like leaves of the Korean fir (Abies koreana Wilson) collected from Mt. Halla in Jeju, South Korea. A 16S rRNA sequence comparison indicated that the closest phylogenetic neighbors were Sphingomonas crusticola MIMD3T (95.6%) and Sphingomonas jatrophae S5-249T (95.3%) of the family Sphingomonadaceae. Strain AK-PDB1-5T had a genome size of 4,298,284 bp with a 67.8% G + C content, and digital DNA-DNA hybridization and OrthoANI values with the most closely related species of only 19.5-21% and 75.1-76.8%, respectively. Cells of the strain AK-PDB1-5T were Gram-negative, short rods, oxidase- and catalase-positive. Growth occurred at pH 5.0-9.0 (optimum pH 8.0) in the absence of NaCl at 4-37°C (optimum 25-30°C). Strain AK-PDB1-5T contained C14:0 2OH, C16:0 and summed feature 8 as the major cellular fatty acids (> 10%), while sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phospholipids and lipids were found to be the major polar lipids. The strain produces a yellow carotenoid pigment; natural products prediction via AntiSMASH tool found zeaxanthin biosynthesis clusters in the entire genome. Biophysical characterization by ultraviolet-visible absorption spectroscopy and ESI-MS studies confirmed the yellow pigment was nostoxanthin. In addition, strain AK-PDB1-5T was found significantly promote Arabidopsis seedling growth under salt conditions by reducing reactive oxygen species (ROS). Based on the polyphasic taxonomic analysis results, strain AK-PDB1-5T was determined to be a novel species in the genus Sphingomonas with the proposed name Sphingomonas nostoxanthinifaciens sp. nov. The type strain is AK-PDB1-5T (= KCTC 82822T = CCTCC AB 2021150T).
Collapse
Affiliation(s)
- Lingmin Jiang
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Jiyoon Seo
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Yuxin Peng
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Doeun Jeon
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ju Huck Lee
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | | |
Collapse
|
7
|
Berihu M, Somera TS, Malik A, Medina S, Piombo E, Tal O, Cohen M, Ginatt A, Ofek-Lalzar M, Doron-Faigenboim A, Mazzola M, Freilich S. A framework for the targeted recruitment of crop-beneficial soil taxa based on network analysis of metagenomics data. MICROBIOME 2023; 11:8. [PMID: 36635724 PMCID: PMC9835355 DOI: 10.1186/s40168-022-01438-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The design of ecologically sustainable and plant-beneficial soil systems is a key goal in actively manipulating root-associated microbiomes. Community engineering efforts commonly seek to harness the potential of the indigenous microbiome through substrate-mediated recruitment of beneficial members. In most sustainable practices, microbial recruitment mechanisms rely on the application of complex organic mixtures where the resources/metabolites that act as direct stimulants of beneficial groups are not characterized. Outcomes of such indirect amendments are unpredictable regarding engineering the microbiome and achieving a plant-beneficial environment. RESULTS This study applied network analysis of metagenomics data to explore amendment-derived transformations in the soil microbiome, which lead to the suppression of pathogens affecting apple root systems. Shotgun metagenomic analysis was conducted with data from 'sick' vs 'healthy/recovered' rhizosphere soil microbiomes. The data was then converted into community-level metabolic networks. Simulations examined the functional contribution of treatment-associated taxonomic groups and linked them with specific amendment-induced metabolites. This analysis enabled the selection of specific metabolites that were predicted to amplify or diminish the abundance of targeted microbes functional in the healthy soil system. Many of these predictions were corroborated by experimental evidence from the literature. The potential of two of these metabolites (dopamine and vitamin B12) to either stimulate or suppress targeted microbial groups was evaluated in a follow-up set of soil microcosm experiments. The results corroborated the stimulant's potential (but not the suppressor) to act as a modulator of plant beneficial bacteria, paving the way for future development of knowledge-based (rather than trial and error) metabolic-defined amendments. Our pipeline for generating predictions for the selective targeting of microbial groups based on processing assembled and annotated metagenomics data is available at https://github.com/ot483/NetCom2 . CONCLUSIONS This research demonstrates how genomic-based algorithms can be used to formulate testable hypotheses for strategically engineering the rhizosphere microbiome by identifying specific compounds, which may act as selective modulators of microbial communities. Applying this framework to reduce unpredictable elements in amendment-based solutions promotes the development of ecologically-sound methods for re-establishing a functional microbiome in agro and other ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Maria Berihu
- Agricultural Research Organization (ARO), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | - Tracey S. Somera
- United States Department of Agriculture-Agricultural Research Service Tree Fruit Research Lab, 1104 N. Western Ave, Wenatchee, WA 98801 USA
| | | | - Shlomit Medina
- Agricultural Research Organization (ARO), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | - Edoardo Piombo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden
| | - Ofir Tal
- Agricultural Research Organization (ARO), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), P.O. Box 447, 49500 Migdal, Israel
| | - Matan Cohen
- Agricultural Research Organization (ARO), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | - Alon Ginatt
- Agricultural Research Organization (ARO), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | | | - Adi Doron-Faigenboim
- Agricultural Research Organization (ARO), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | - Mark Mazzola
- United States Department of Agriculture-Agricultural Research Service Tree Fruit Research Lab, 1104 N. Western Ave, Wenatchee, WA 98801 USA
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7600 South Africa
| | - Shiri Freilich
- Agricultural Research Organization (ARO), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| |
Collapse
|
8
|
Contrasting patterns of microbial dominance in the Arabidopsis thaliana phyllosphere. Proc Natl Acad Sci U S A 2022; 119:e2211881119. [PMID: 36538480 PMCID: PMC9907089 DOI: 10.1073/pnas.2211881119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sphingomonas is one of the most abundant bacterial genera in the phyllosphere of wild Arabidopsis thaliana, but relative to Pseudomonas, the ecology of Sphingomonas and its interaction with plants is poorly described. We analyzed the genomic features of over 400 Sphingomonas isolates collected from local A. thaliana populations, which revealed much higher intergenomic diversity than for the considerably more uniform Pseudomonas isolates found in the same host populations. Variation in Sphingomonas plasmid complements and additional genomic features suggest high adaptability of this genus, and the widespread presence of protein secretion systems hints at frequent biotic interactions. While some of the isolates showed plant-protective phenotypes in lab tests, this was a rare trait. To begin to understand the extent of strain sharing across alternate hosts, we employed amplicon sequencing and a bulk-culturing metagenomics approach on both A. thaliana and neighboring plants. Our data reveal that both Sphingomonas and Pseudomonas thrive on other diverse plant hosts, but that Sphingomonas is a poor competitor in dying or dead leaves.
Collapse
|
9
|
Comparative Genomics Reveals Genetic Diversity and Metabolic Potentials of the Genus Qipengyuania and Suggests Fifteen Novel Species. Microbiol Spectr 2022; 10:e0126421. [PMID: 35446150 PMCID: PMC9241875 DOI: 10.1128/spectrum.01264-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Members of the genus Qipengyuania are heterotrophic bacteria frequently isolated from marine environments with great application potential in areas such as carotenoid production. However, the genomic diversity, metabolic function, and adaption of this genus remain largely unclear. Here, 16 isolates related to the genus Qipengyuania were recovered from coastal samples and their genomes were sequenced. The phylogenetic inference of these isolates and reference type strains of this genus indicated that the 16S rRNA gene was insufficient to distinguish them at the species level; instead, the phylogenomic reconstruction could provide the reliable phylogenetic relationships and confirm 15 new well-supported branches, representing 15 putative novel genospecies corroborated by the digital DNA-DNA hybridization and average nucleotide identity analyses. Comparative genomics revealed that the genus Qipengyuania had an open pangenome and possessed multiple conserved genes and pathways related to metabolic functions and environmental adaptation, despite the presence of divergent genomic features and specific metabolic potential. Genetic analysis and pigment detection showed that the members of this genus were identified as carotenoid producers, while some proved to be potentially aerobic anoxygenic photoheterotrophs. Collectively, the first insight into the genetic diversity and metabolic potentials of the genus Qipengyuania will contribute to better understanding of the speciation and adaptive evolution in natural environments. IMPORTANCE The deciphering of the phylogenetic diversity and metabolic features of the abundant bacterial taxa is critical for exploring their ecological importance and application potential. Qipengyuania is a genus of frequently isolated heterotrophic microorganisms with great industrial application potential. Numerous strains related to the genus Qipengyuania have been isolated from diverse environments, but their genomic diversity and metabolic functions remain unclear. Our study revealed a high degree of genetic diversity, metabolic versatility, and environmental adaptation of the genus Qipengyuania using comparative genomics. Fifteen novel species of this genus have been established using a polyphasic taxonomic approach, expanding the number of described species to almost double. This study provided an overall view of the genus Qipengyuania at the genomic level and will enable us to better uncover its ecological roles and evolutionary history.
Collapse
|
10
|
Zhang C, Xiong B, Chen L, Ge W, Yin S, Feng Y, Sun Z, Sun Q, Zhao Y, Shen W, Zhang H. Rescue of male fertility following faecal microbiota transplantation from alginate oligosaccharide-dosed mice. Gut 2021; 70:2213-2215. [PMID: 33443023 PMCID: PMC8515102 DOI: 10.1136/gutjnl-2020-323593] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/08/2022]
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, China,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, China,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yanni Feng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Zhongyi Sun
- Center for Reproductive Medicine, Urology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingyuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, China .,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, China
| |
Collapse
|
11
|
Steiner PA, Geijo J, Fadeev E, Obiol A, Sintes E, Rattei T, Herndl GJ. Functional Seasonality of Free-Living and Particle-Associated Prokaryotic Communities in the Coastal Adriatic Sea. Front Microbiol 2020; 11:584222. [PMID: 33304331 PMCID: PMC7701263 DOI: 10.3389/fmicb.2020.584222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Marine snow is an important habitat for microbes, characterized by chemical and physical properties contrasting those of the ambient water. The higher nutrient concentrations in marine snow lead to compositional differences between the ambient water and the marine snow-associated prokaryotic community. Whether these compositional differences vary due to seasonal environmental changes, however, remains unclear. Thus, we investigated the seasonal patterns of the free-living and marine snow-associated microbial community composition and their functional potential in the northern Adriatic Sea. Our data revealed seasonal patterns in both, the free-living and marine snow-associated prokaryotes. The two assemblages were more similar to each other in spring and fall than in winter and summer. The taxonomic distinctness resulted in a contrasting functional potential. Motility and adaptations to low temperature in winter and partly anaerobic metabolism in summer characterized the marine snow-associated prokaryotes. Free-living prokaryotes were enriched in genes indicative for functions related to phosphorus limitation in winter and in genes tentatively supplementing heterotrophic growth with proteorhodopsins and CO-oxidation in summer. Taken together, the results suggest a strong influence of environmental parameters on both free-living and marine snow-associated prokaryotic communities in spring and fall leading to higher similarity between the communities, while the marine snow habitat in winter and summer leads to a specific prokaryotic community in marine snow in these two seasons.
Collapse
Affiliation(s)
- Paul A. Steiner
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Javier Geijo
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Aleix Obiol
- Institut de Ciències del Mar, Institut de Ci ncies del Mar – Consejo Superior de Investigaciones Cient ficas (ICM-CSIC), Barcelona, Spain
| | - Eva Sintes
- Instituto Español de Oceanografia, Centre Oceanogràfic de les Balears, Palma, Spain
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Liu Y, Du J, Zhang J, Lai Q, Shao Z, Zhu H. Sphingorhabdus soli sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol 2020; 70:1610-1616. [PMID: 31904318 DOI: 10.1099/ijsem.0.003943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A Gram-stain-negative, strictly aerobic, rod-shaped and non-motile bacterial strain, designated D-2Q-5-6T, was isolated from a soil sample collected from the Arctic region. Strain D-2Q-5-6T was found to grow at 10-43 °C (optimum, 28 °C), at pH 6.0-9.0 (pH 7.0) and in 0-5 % (w/v) NaCl (0-1 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain D-2Q-5-6T fell into the genus Sphingorhabdus and shared less than 95.8 % identity with all type strains of recognized species of this genus. The major cellular fatty acids of strain D-2Q-5-6T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 31.4 %), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 26.8 %) and C14 : 0 2OH (11.7 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. The predominant quinone was identified as Q10. The DNA G+C content of strain D-2Q-5-6T was 64.5 mol%. Based on the results of phylogenetic analysis and distinctive phenotypic characteristics, strain D-2Q-5-6T is concluded to represent a novel species of the genus Sphingorhabdus, for which the name Sphingorhabdus soli sp. nov. is proposed. The type strain of the species is D-2Q-5-6T (=MCCC 1A06070T=KCTC 52311T).
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Juan Du
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jun Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| |
Collapse
|
13
|
Hervé V, Lopez PJ. Analysis of interdomain taxonomic patterns in urban street mats. Environ Microbiol 2020; 22:1280-1293. [PMID: 31997567 DOI: 10.1111/1462-2920.14933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Abstract
Streets are constantly crossed by billions of vehicles and pedestrians. Their gutters, which convey stormwater and contribute to waste management, and are important for human health and well-being, probably play a number of ecological roles. Street surfaces may also represent an important part of city surface areas. To better characterize the ecology of this yet poorly explored compartment, we used filtration and DNA metabarcoding to address microbial community composition and assembly across the city of Paris, France. Diverse bacterial and eukaryotic taxonomic groups were identified, including members involved in key biogeochemical processes, along with a number of parasites and putative pathogens of human, animals and plants. We showed that the beta diversity patterns between bacterial and eukaryotic communities were correlated, suggesting interdomain associations. Beta diversity analyses revealed the significance of biotic factors (cohesion metrics) in shaping gutter microbial community assembly and, to a lesser extent, the contribution of abiotic factors (pH and conductivity). Co-occurrences analysis confirmed contrasting non-random patterns both within and between domains of life, specifically when comparing diatoms and fungi. Our results highlight microbial coexistence patterns in streets and reinforce the need to further explore biodiversity in urban ground transportation infrastructures.
Collapse
Affiliation(s)
- Vincent Hervé
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Pascal Jean Lopez
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Recherche pour le Développement, Université de Caen Normandie, Université des Antilles, 43 rue Cuvier, 75005, Paris, France
| |
Collapse
|
14
|
Petruk G, Roxo M, De Lise F, Mensitieri F, Notomista E, Wink M, Izzo V, Monti DM. The marine Gram-negative bacterium Novosphingobium sp. PP1Y as a potential source of novel metabolites with antioxidant activity. Biotechnol Lett 2018; 41:273-281. [PMID: 30542947 DOI: 10.1007/s10529-018-02636-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The antioxidant activity and protective effect of a methanolic extract obtained from the marine Gram-negative bacterium Novosphingobium sp. PP1Y, isolated from the surface water of a polluted area in the harbour of Pozzuoli (Naples, Italy), was evaluated. RESULTS The extract was tested in vitro on epithelial colorectal adenocarcinoma cells and in vivo on Caenorhabditis elegans. It showed strong protective activity against oxidative stress, in both experimental systems, by preventing ROS accumulation. In the case of the cells, pre-treatment with methanolic extract was also able to maintain unaltered intracellular GSH levels and phosphorylation levels of mitogen-activated protein kinases p38. Instead, in the case of the worms, the extract was able to modulate the expression levels of stress response genes, by activating the transcription factor skn-1. CONCLUSIONS From a biotechnological and economical point of view, antioxidants from microorganisms are convenient as they provide a valid alternative to chemical synthesis and respond to the ever-growing market demand for natural antioxidants.
Collapse
Affiliation(s)
- Ganna Petruk
- Department of Chemical Sciences, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Mariana Roxo
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120, Heidelberg, Germany
| | - Federica De Lise
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Francesca Mensitieri
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120, Heidelberg, Germany
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry, via S. Allende, 84081, Salerno, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy.
| |
Collapse
|