1
|
Paria P, Chakraborty HJ, Pakhira A, Devi MS, Das Mohapatra PK, Behera BK. Identification of virulence-associated factors in Vibrio parahaemolyticus with special reference to moonlighting protein: a secretomics study. Int Microbiol 2024; 27:765-779. [PMID: 37702858 DOI: 10.1007/s10123-023-00429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Vibrio parahaemolyticus causes seafood-borne gastroenteritis infection in human which can even lead to death. The pathogenic strain of V. parahaemolyticus secretes different types of virulence factors that are directly injected into the host cell by a different type of secretion system which helps bacteria to establish its own ecological niche within the organism. Therefore, the aim of this study was to isolate the extracellular secreted proteins from the trh positive strain of V. parahaemolyticus and identify them using two-dimensional gel electrophoresis and MALDI-TOFMS/MS. Seventeen different cellular proteins viz, Carbamoyl-phosphate synthase, 5-methyltetrahydropteroyltriglutamate, tRNA-dihydrouridine synthase, Glycerol-3-phosphate dehydrogenase, Orotidine 5'-phosphate decarboxylase, Molybdenum import ATP-binding protein, DnaJ, DNA polymerase IV, Ribosomal RNA small subunit methyltransferase G, ATP synthase subunit delta and gamma, Ribosome-recycling factor, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, tRNA pseudouridine synthase B, Ditrans, polycis-undecaprenyl-diphosphate synthase, Oxygen-dependent coproporphyrinogen-III oxidase, and Peptide deformylase 2 were identified which are mainly involved in different metabolic and biosynthetic pathways. Furthermore, the molecular function of the identified proteins were associated with catalytic activity, ligase activity, transporter, metal binding, and ATP synthase when they are intercellular. However, to understand the importance of these secreted proteins in the infection and survival of bacteria inside the host cell, pathogen-host protein-protein interactions (PPIs) were carried out which identified the association of eight secreted proteins with 41 human proteins involved in different cellular pathways, including ubiquitination degradation, adhesion, inflammation, immunity, and programmed cell death. The present study provides unreported strategies on host-cell environment's survival and adaptation mechanisms for the successful establishment of infections and intracellular propagation.
Collapse
Affiliation(s)
- Prasenjit Paria
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
- Vidyasagar University, Midnapur, West Bengal, 721102, India
| | - Hirak Jyoti Chakraborty
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Abhijit Pakhira
- Department of Zoology, Vivekananda Mahavidyalaya, Hooghly, West Bengal, 712405, India
| | - Manoharmayum Shaya Devi
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| |
Collapse
|
2
|
Zhang X, Sun J, Chen F, Qi H, Chen L, Sung YY, Huang Y, Lv A, Hu X. Phenotypic and genomic characterization of a Vibrio parahaemolyticus strain causing disease in Penaeus vannamei provides insights into its niche adaptation and pathogenic mechanism. Microb Genom 2021; 7. [PMID: 33952389 PMCID: PMC8209731 DOI: 10.1099/mgen.0.000549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10–55 p.p.t.), temperature (23–37 °C) and pH (6–10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
Collapse
Affiliation(s)
- Xue Zhang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Jingfeng Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Feng Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Hongli Qi
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Limei Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Yadong Huang
- Tianjin Hengqian Aquaculture Co. Ltd, Tianjin 300270, PR China
| | - Aijun Lv
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xiucai Hu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
3
|
Wang Y, Zhao Y, Pan Y, Liu H. Comparison on the Growth Variability of Vibrio parahaemolyticus Coupled With Strain Sources and Genotypes Analyses in Simulated Gastric Digestion Fluids. Front Microbiol 2020; 11:212. [PMID: 32194519 PMCID: PMC7062715 DOI: 10.3389/fmicb.2020.00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/30/2020] [Indexed: 11/24/2022] Open
Abstract
Vibrio parahaemolyticus is a food-borne pathogen that causes pathogenic symptoms such as diarrhea and abdominal pain. Currently no studies have shown that either pathogenic and non-pathogenic V. parahaemolyticus possess growth heterogeneity in a human environment, such as in gastric and intestinal fluids. The tlh gene is present in both pathogenic and non-pathogenic V. parahaemolyticus strains, while the tdh and trh genes are only present in pathogenic strains. This study firstly applied simulated human gastric fluids to explore growth variability of 50 strains of V. parahaemolyticus at 37°C. The bacterial growth curves were fitted by primary modified Gompertz model, and the maximum growth rate (μmax), lag time (LT), and their CV values were calculated to compare the stress response of pathogenic and non-pathogenic V. parahaemolyticus to simulated human gastric fluids. Results showed that the simulated human gastric fluids treatment significantly increased the μmax of pathogenic strains and shortened the lag time, while decreased the μmax of non-pathogenic strains and prolonged the lag time. Meanwhile, the CV values of genotypes (tlh+/tdh+/trh–) evidently increased, showing that the pathogenic genotype (tlh+/tdh+/trh–) strains had strong activity to simulated gastric fluids. All of the results indicated that the V. parahaemolyticus strains exhibited a great stress-resistant variability and growth heterogeneity to the simulated gastric fluids, which provides a novel insight to unlock the efficient control of pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Yangmei Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai, Shanghai, China.,Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Kumar R, Ng TH, Chang CC, Tung TC, Lin SS, Lo CF, Wang HC. Bile acid and bile acid transporters are involved in the pathogenesis of acute hepatopancreatic necrosis disease in white shrimp Litopenaeus vannamei. Cell Microbiol 2019; 22:e13127. [PMID: 31610617 DOI: 10.1111/cmi.13127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
Abstract
Acute hepatopancreas necrosis disease is a recently emerged shrimp disease that is caused by virulent strains of Vibrio parahaemolyticus. Although AHPND poses a serious threat to the shrimp industry, particularly in Asia, its underlying pathogenic mechanisms are not well characterized. Since a previous transcriptomic study showed upregulation of the apical sodium bile acid transporter (LvASBT), our objective here was to explore the role of bile acids and bile acid transporters in AHPND infection. We confirmed that mRNA expression of LvASBT was upregulated in the stomach of AHPND-infected shrimps. Bile acid concentrations were also higher in the stomach of AHPND-infected shrimp and correlated with high expression of pVA plasmid and Pir toxins. In vitro assays showed that bile acids enhanced biofilm formation and increased the release of PirABvp toxins in AHPND-causing V. parahaemolyticus, while in vivo inhibition of LvASBT by GSK2330672 reduced the copy numbers of pVA plasmid, Pir toxin and reduced the amounts of bile acids in AHPND-infected shrimp stomach. Transcriptomics data for AHPND-causing V. parahaemolyticus treated with bile acids showed upregulation of various genes involved in membrane transport, RND efflux pumps and a bacterial secretion system. Taken together, our results show that AHPND-causing V. parahaemolyticus virulence is positively regulated by bile acids and that LvASBT and bile acids in shrimp stomach have important roles in AHPND pathogenesis.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tze Hann Ng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Che-Chih Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Teng-Chun Tung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chu-Fang Lo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|