1
|
Palevich N, Palevich FP, Attwood GT, Kelly WJ. Complete genome sequence of the rumen bacterium Butyrivibrio fibrisolvens D1 T. Microbiol Resour Announc 2024; 13:e0026724. [PMID: 38651913 PMCID: PMC11237740 DOI: 10.1128/mra.00267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Butyrivibrio are anaerobic bacteria and members of the family Lachnospiraceae with important roles in fiber digestion in both animals and humans. This report describes the complete genome of Butyrivibrio fibrisolvens type strain D1T (DSM 3071) consisting of a chromosome (CP146963), megaplasmid (pNP243), and small plasmid (pNP21).
Collapse
Affiliation(s)
- Nikola Palevich
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - Faith P Palevich
- Hopkirk Research Institute, AgResearch Ltd., Palmerston North, New Zealand
| | - Graeme T Attwood
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - William J Kelly
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| |
Collapse
|
2
|
Yang Z, Chen X, Yu M, Jing R, Bao L, Zhao X, Pan K, Chao B, Qu M. Metagenomic sequencing identified microbial species in the rumen and cecum microbiome responsible for niacin treatment and related to intramuscular fat content in finishing cattle. Front Microbiol 2024; 15:1334068. [PMID: 38529181 PMCID: PMC10961399 DOI: 10.3389/fmicb.2024.1334068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Niacin is one of the essential vitamins for mammals. It plays important roles in maintaining rumen microecological homeostasis. Our previous study indicated that dietary niacin significantly elevated intramuscular fat content (IMF) in castrated finishing steers. Whether niacin affects fat deposition by regulating the microbial composition and functional capacities of gastrointestinal microbiome has been unknown yet. Methods In this study, 16 castrated Xiangzhong Black cattle were randomly assigned into either control group fed with a basal concentrate diet (n = 8) or niacin group fed with a basal concentrate diet added 1000 mg/kg niacin (n = 8). Seven rumen samples and five cecum content samples were randomly collected from each of control and niacin groups for metagenomic sequencing analysis. Results A total of 2,981,786 non-redundant microbial genes were obtained from all tested samples. Based on this, the phylogenetic compositions of the rumen and cecum microbiome were characterized. We found that bacteria dominated the rumen and cecum microbiome. Prevotella ruminicola and Ruminococcus flavefaciens were the most abundant bacterial species in the rumen microbiome, while Clostridiales bacterium and Eubacterium rectale were predominant bacterial species in the cecum microbiome. Rumen microbiome had significantly higher abundances of GHs, GTs, and PLs, while cecum microbiome was enriched by CBMs and AAs. We found a significant effect of dietary niacin on rumen microbiome, but not on cecum microbiome. Dietary niacin up-regulated the abundances of bacterial species producing lactic acid and butyrate, fermenting lactic acid, and participating in lipid hydrolysis, and degradation and assimilation of nitrogen-containing compounds, but down-regulated the abundances of several pathogens and bacterial species involved in the metabolism of proteins and peptides, and methane emissions. From the correlation analysis, we suggested that niacin improved nutrient digestion and absorption, but reduced energy loss, and Valine, leucine and isoleucine degradation of rumen microbiome, which resulted in the increased host IMF. Conclusion The results suggested that dietary manipulation, such as the supplementation of niacin, should be regarded as the effective and convenient way to improve IMF of castrated finishing steers by regulating rumen microbiome.
Collapse
Affiliation(s)
- Zhuqing Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingjin Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruixue Jing
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Linbin Bao
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- Animal Husbandry and Veterinary Bureau of Guangchang County, Fuzhou, China
| | - Xianghui Zhao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Ke Pan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Bihui Chao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Krishnamurthy HK, Pereira M, Bosco J, George J, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Gut commensals and their metabolites in health and disease. Front Microbiol 2023; 14:1244293. [PMID: 38029089 PMCID: PMC10666787 DOI: 10.3389/fmicb.2023.1244293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose of review This review comprehensively discusses the role of the gut microbiome and its metabolites in health and disease and sheds light on the importance of a holistic approach in assessing the gut. Recent findings The gut microbiome consisting of the bacteriome, mycobiome, archaeome, and virome has a profound effect on human health. Gut dysbiosis which is characterized by perturbations in the microbial population not only results in gastrointestinal (GI) symptoms or conditions but can also give rise to extra-GI manifestations. Gut microorganisms also produce metabolites (short-chain fatty acids, trimethylamine, hydrogen sulfide, methane, and so on) that are important for several interkingdom microbial interactions and functions. They also participate in various host metabolic processes. An alteration in the microbial species can affect their respective metabolite concentrations which can have serious health implications. Effective assessment of the gut microbiome and its metabolites is crucial as it can provide insights into one's overall health. Summary Emerging evidence highlights the role of the gut microbiome and its metabolites in health and disease. As it is implicated in GI as well as extra-GI symptoms, the gut microbiome plays a crucial role in the overall well-being of the host. Effective assessment of the gut microbiome may provide insights into one's health status leading to more holistic care.
Collapse
Affiliation(s)
| | | | - Jophi Bosco
- Vibrant America LLC., San Carlos, CA, United States
| | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States
| | | |
Collapse
|
4
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023; 13:1103836. [PMID: 36713166 PMCID: PMC9877435 DOI: 10.3389/fmicb.2022.1103836] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Smith MS, Hickman-Brown KJ, McAnally BE, Oliveira Filho RV, de Melo GD, Pohler KG, Poole RK. Reproductive microbiome and cytokine profiles associated with fertility outcomes of postpartum beef cows. J Anim Sci 2023; 101:skad219. [PMID: 37354343 PMCID: PMC10362934 DOI: 10.1093/jas/skad219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Shifts from commensal bacteria (for example, Lactobacillus in the phylum Firmicutes) within the reproductive tract have been associated with changes in local reproductive immune responses and decreased fertility in humans. The objective of this study was to characterize the microbiome and cytokine concentrations before artificial insemination (AI) in vaginal and uterine flushes from postpartum beef cows. Twenty Bos indicus-influenced beef cows (approximately 60 d postpartum and free of reproductive, health, or physical issues) were enrolled. The B. indicus prostaglandin (PG) 5-d + controlled intervaginal drug-releasing estrus synchronization protocol was initiated on day -8 of the study with timed AI on d0. Blood samples were collected on days -3, -1, and 28 via coccygeal venipuncture. Vaginal and uterine flushes were collected on days -3 and -1. Based on days 28 pregnancy status determined by transrectal ultrasonography, cows were identified as either Open (n = 13) or Pregnant (n = 7). Bacterial community analyses were conducted targeting the V4 hypervariable region of the 16S rRNA gene. Cytokine analyses were performed using the RayBiotech Quantibody Bovine Cytokine Array Q1 and MyBioSource ELISA kits per the manufacturer's instructions. Statistical analyses for bacteria relative abundance were conducted using PROC NPAR1WAY and for cytokine concentrations using PROC GLM in SAS 9.4. Uterine concentrations of interferon γ, interleukin (IL)1α, and IL21 were greater in Open than in Pregnant cows (P < 0.05). Regardless of pregnancy status, uterine IL13 increased from days -3 to -1 (9.76 vs. 39.48 ± 9.28 pg/mL, respectively; P < 0.05). Uterine relative abundance of the phylum Firmicutes decreased from days -3 to -1 in Open cows (60.4% ± 0.9% vs. 48.5% ± 3.2%; P = 0.004). In Open cows, the genus Blautia decreased in relative abundance within the uterus from days -3 to -1 (2.1% ± 0.2% vs. 0.9% ± 0.1%; P = 0.002). Uterine relative abundance of the phylum Tenericutes increased from days -3 to -1 in Pregnant cows (1.0% ± 0.1% vs. 7.6% ± 4.1%; P = 0.002). In Pregnant cows, the genus Ureaplasma tended to increase within the uterus from days -3 to -1 (0.08% ± 0.06% vs. 7.3% ± 4.1%; P = 0.054). These findings suggest a distinct difference in the reproductive microbiome and cytokine profiles before AI for resulting Open vs. Pregnant cows.
Collapse
Affiliation(s)
- Molly S Smith
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Kyle J Hickman-Brown
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Brooke E McAnally
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | - Ky G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Rebecca K Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
6
|
Zhang J, Lu R, Zhang Y, Matuszek Ż, Zhang W, Xia Y, Pan T, Sun J. tRNA Queuosine Modification Enzyme Modulates the Growth and Microbiome Recruitment to Breast Tumors. Cancers (Basel) 2020; 12:E628. [PMID: 32182756 PMCID: PMC7139606 DOI: 10.3390/cancers12030628] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transfer RNA (tRNA) queuosine (Q)-modifications occur specifically in 4 cellular tRNAs at the wobble anticodon position. tRNA Q-modification in human cells depends on the gut microbiome because the microbiome product queuine is required for its installation by the enzyme Q tRNA ribosyltransferase catalytic subunit 1 (QTRT1) encoded in the human genome. Queuine is a micronutrient from diet and microbiome. Although tRNA Q-modification has been studied for a long time regarding its properties in decoding and tRNA fragment generation, how QTRT1 affects tumorigenesis and the microbiome is still poorly understood. RESULTS We generated single clones of QTRT1-knockout breast cancer MCF7 cells using Double Nickase Plasmid. We also established a QTRT1-knockdown breast MDA-MB-231 cell line. The impacts of QTRT1 deletion or reduction on cell proliferation and migration in vitro were evaluated using cell culture, while the regulations on tumor growth in vivo were evaluated using a xenograft BALB/c nude mouse model. We found that QTRT1 deficiency in human breast cancer cells could change the functions of regulation genes, which are critical in cell proliferation, tight junction formation, and migration in human breast cancer cells in vitro and a breast tumor mouse model in vivo. We identified that several core bacteria, such as Lachnospiraceae, Lactobacillus, and Alistipes, were markedly changed in mice post injection with breast cancer cells. The relative abundance of bacteria in tumors induced from wildtype cells was significantly higher than those of QTRT1 deficiency cells. CONCLUSIONS Our results demonstrate that the QTRT1 gene and tRNA Q-modification altered cell proliferation, junctions, and microbiome in tumors and the intestine, thus playing a critical role in breast cancer development.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Żaneta Matuszek
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; (Ż.M.); (T.P.)
| | - Wen Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; (Ż.M.); (T.P.)
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|