1
|
Dai Y, Liu R, Yue Y, Song N, Jia H, Ma Z, Gao X, Zhang M, Yuan X, Liu Q, Liu X, Li B, Wang W. A c-di-GMP binding effector STM0435 modulates flagellar motility and pathogenicity in Salmonella. Virulence 2024; 15:2331265. [PMID: 38532247 PMCID: PMC10978029 DOI: 10.1080/21505594.2024.2331265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Flagella play a crucial role in the invasion process of Salmonella and function as a significant antigen that triggers host pyroptosis. Regulation of flagellar biogenesis is essential for both pathogenicity and immune escape of Salmonella. We identified the conserved and unknown function protein STM0435 as a new flagellar regulator. The ∆stm0435 strain exhibited higher pathogenicity in both cellular and animal infection experiments than the wild-type Salmonella. Proteomic and transcriptomic analyses demonstrated dramatic increases in almost all flagellar genes in the ∆stm0435 strain compared to wild-type Salmonella. In a surface plasmon resonance assay, purified STM0435 protein-bound c-di-GMP had an affinity of ~8.383 µM. The crystal structures of apo-STM0435 and STM0435&c-di-GMP complex were determined. Structural analysis revealed that R33, R137, and D138 of STM0435 were essential for c-di-GMP binding. A Salmonella with STM1987 (GGDEF protein) or STM4264 (EAL protein) overexpression exhibits completely different motility behaviours, indicating that the binding of c-di-GMP to STM0435 promotes its inhibitory effect on Salmonella flagellar biogenesis.
Collapse
Affiliation(s)
- Yuanji Dai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongrui Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xilu Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyu Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Jinan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Cobo-Simón M, Hart R, Ochman H. Gene flow and species boundaries of the genus Salmonella. mSystems 2023; 8:e0029223. [PMID: 37486130 PMCID: PMC10470047 DOI: 10.1128/msystems.00292-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
The genus Salmonella comprises two species, Salmonella bongori and Salmonella enterica, which are infectious to a wide variety of animal hosts. The diversity within S. enterica has been further partitioned into 6-10 subspecies based on such features as host range, geography, and most recently, genetic relatedness and phylogenetic affiliation. Although Salmonella pathogenicity is attributable to large numbers of acquired virulence factors, the extent of homologous exchange in the species at large is apparently constrained such that the species and subspecies form distinct clusters of strains. To explore the extent of gene flow within and among subspecies, and to ultimately define true biological species, we evaluated patterns of recombination in over 1,000 genomes currently assigned to the genus. Those Salmonella subspecies containing sufficient numbers of sequenced genomes to allow meaningful analysis-i.e., subsp. enterica and diarizonae-were found to be reproductively isolated from one another and from all other subspecies. Based on the configuration of genomic sequence divergence among subspecies, it is expected that each of the other Salmonella subspecies will also represent a biological species. Our findings argue against the application of prescribed nucleotide-identity thresholds to delineate bacterial species and contend that the Biological Species Concept should not be disregarded for bacteria, even those, like Salmonella, that demonstrate complex patterns of species and subspecies divergence. IMPORTANCE The Biological Species Concept (BSC), which defines species boundaries based on the capacity for gene exchange, is widely used to classify sexually reproducing eukaryotes but is generally thought to be inapplicable to bacteria due to their completely asexual mode of reproduction. We show that the genus Salmonella, whose thousands of described serovars were formerly considered to be strictly clonal, undergoes sufficient levels of homologous recombination to be assigned to species according to the BSC. Aside from the two recognized species, Salmonella enterica and Salmonella bongori, several (and likely all) of the subspecies within S. enterica are reproductively isolated from one another and should each be considered a separate biological species. These findings demonstrate that species barriers in bacteria can form despite high levels of nucleotide identity and that commonly applied thresholds of genomic sequence identity are not reliable indicators of bacterial species status.
Collapse
Affiliation(s)
- Marta Cobo-Simón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Rowan Hart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Huynh TN, Stewart V. Purine catabolism by enterobacteria. Adv Microb Physiol 2023; 82:205-266. [PMID: 36948655 DOI: 10.1016/bs.ampbs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Purines are abundant among organic nitrogen sources and have high nitrogen content. Accordingly, microorganisms have evolved different pathways to catabolize purines and their metabolic products such as allantoin. Enterobacteria from the genera Escherichia, Klebsiella and Salmonella have three such pathways. First, the HPX pathway, found in the genus Klebsiella and very close relatives, catabolizes purines during aerobic growth, extracting all four nitrogen atoms in the process. This pathway includes several known or predicted enzymes not previously observed in other purine catabolic pathways. Second, the ALL pathway, found in strains from all three species, catabolizes allantoin during anaerobic growth in a branched pathway that also includes glyoxylate assimilation. This allantoin fermentation pathway originally was characterized in a gram-positive bacterium, and therefore is widespread. Third, the XDH pathway, found in strains from Escherichia and Klebsiella spp., at present is ill-defined but likely includes enzymes to catabolize purines during anaerobic growth. Critically, this pathway may include an enzyme system for anaerobic urate catabolism, a phenomenon not previously described. Documenting such a pathway would overturn the long-held assumption that urate catabolism requires oxygen. Overall, this broad capability for purine catabolism during either aerobic or anaerobic growth suggests that purines and their metabolites contribute to enterobacterial fitness in a variety of environments.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Food Science, University of Wisconsin, Madison, WI, United States
| | - Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, United States.
| |
Collapse
|
4
|
Genome-Wide Searching Single Nucleotide-Polymorphisms (SNPs) and SNPs-Targeting a Multiplex Primer for Identification of Common Salmonella Serotypes. Pathogens 2022; 11:pathogens11101075. [PMID: 36297133 PMCID: PMC9611365 DOI: 10.3390/pathogens11101075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
A rapid and high-quality single-nucleotide polymorphisms (SNPs)-based method was developed to improve detection and reduce salmonellosis burden. In this study, whole-genome sequence (WGS) was used to investigate SNPs, the most common genetic marker for identifying bacteria. SNP-sites encompassing 15 sets of primers (666–863 bp) were selected and used to amplify the target Salmonella serovar strains, and the amplified products were sequenced. The prevalent Salmonella enterica subspecies enterica serovars, including Typhimurium; Enteritidis, Agona, enterica, Typhi, and Abony, were amplified and sequenced. The amplified sequences of six Salmonella serovars with 15 sets of SNP-sites encompassing primers were aligned, explored SNPs, and SNPs-carrying primers (23 sets) were designed to develop a multiplex PCR marker (m-PCR). Each primer exists in at least two SNPs bases at the 3′ end of each primer, such as one was wild, and another was a mismatched base by transition or transversion mutation. Thus, twenty-three sets of SNP primers (242–670 bp), including 13 genes (SBG, dedA, yacG, mrcB, mesJ, metN, rihA/B, modA, hutG, yehX, ybiY, moeB, and sopA), were developed for PCR confirmation of target Salmonella serovar strains. Finally, the SNPs in four genes, including fliA gene (S. Enteritidis), modA (S. Agona and S. enterica), sopA (S. Abony), and mrcB (S. Typhimurium and S. Typhi), were used for detection markers of six target Salmonella serotypes. We developed an m-PCR primer set in which Salmonella serovars were detected in a single reaction. Nevertheless, m-PCR was validated with 21 Salmonella isolates (at least one isolate was taken from one positive animal fecal, and n = 6 reference Salmonella strains) and non-Salmonella bacteria isolates. The SNP-based m-PCR method would identify prevalent Salmonella serotypes, minimize the infection, and control outbreaks.
Collapse
|
5
|
Cherchame E, Ilango G, Noël V, Cadel-Six S. Polyphyly in widespread Salmonella enterica serovars and using genomic proximity to choose the best reference genome for bioinformatics analyses. Front Public Health 2022; 10:963188. [PMID: 36159272 PMCID: PMC9493441 DOI: 10.3389/fpubh.2022.963188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023] Open
Abstract
Salmonella is the most common cause of gastroenteritis in the world. Over the past 5 years, whole-genome analysis has led to the high-resolution characterization of clinical and foodborne Salmonella responsible for typhoid fever, foodborne illness or contamination of the agro-food chain. Whole-genome analyses are simplified by the availability of high-quality, complete genomes for mapping analysis and for calculating the pairwise distance between genomes, but unfortunately some difficulties may still remain. For some serovars, the complete genome is not available, or some serovars are polyphyletic and knowing the serovar alone is not sufficient for choosing the most appropriate reference genome. For these serovars, it is essential to identify the genetically closest complete genome to be able to carry out precise genome analyses. In this study, we explored the genomic proximity of 650 genomes of the 58 Salmonella enterica subsp. enterica serovars most frequently isolated in humans and from the food chain in the United States (US) and in Europe (EU), with a special focus on France. For each serovar, to take into account their genomic diversity, we included all the multilocus sequence type (MLST) profiles represented in EnteroBase with 10 or more genomes (on 19 July 2021). A phylogenetic analysis using both core- and pan-genome approaches was carried out to identify the genomic proximity of all the Salmonella studied and 20 polyphyletic serovars that have not yet been described in the literature. This study determined the genetic proximity between all 58 serovars studied and revealed polyphyletic serovars, their genomic lineages and MLST profiles. Finally, we enhanced the open-access databases with 73 new genomes and produced a list of high-quality complete reference genomes for 48 S. enterica subsp. enterica serovars among the most isolated in the US, EU, and France.
Collapse
|
6
|
Guard J. Through the Looking Glass: Genome, Phenome, and Interactome of Salmonella enterica. Pathogens 2022; 11:pathogens11050581. [PMID: 35631102 PMCID: PMC9144603 DOI: 10.3390/pathogens11050581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review revisits previous concepts on biological phenomenon contributing to the success of the Salmonella enterica subspecies I as a pathogen and expands upon them to include progress in epidemiology based on whole genome sequencing (WGS). Discussion goes beyond epidemiological uses of WGS to consider how phenotype, which is the biological character of an organism, can be correlated with its genotype to develop a knowledge of the interactome. Deciphering genome interactions with proteins, the impact of metabolic flux, epigenetic modifications, and other complex biochemical processes will lead to new therapeutics, control measures, environmental remediations, and improved design of vaccines.
Collapse
Affiliation(s)
- Jean Guard
- U. S. Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, 950 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
7
|
The Invasin and Complement-Resistance Protein Rck of Salmonella is More Widely Distributed than Previously Expected. Microbiol Spectr 2021; 9:e0145721. [PMID: 34704781 PMCID: PMC8549739 DOI: 10.1128/spectrum.01457-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rck open reading frame (ORF) on the pefI-srgC operon encodes an outer membrane protein responsible for invasion of nonphagocytic cell lines and resistance to complement-mediated killing. Until now, the rck ORF was only detected on the virulence plasmids of three serovars of Salmonella subsp. enterica (i.e., Bovismorbificans, Enteritidis, and Typhimurium). The increasing number of Salmonella genome sequences allowed us to use a combination of reference sequences and whole-genome multilocus sequence typing (wgMLST) data analysis to probe the presence of the operon and of rck in a wide array of isolates belonging to all Salmonella species and subspecies. We established the presence of partial or complete operons in 61 subsp. enterica serovars as well as in 4 other subspecies with various syntenies and frequencies. The rck ORF itself was retrieved in 36 subsp. enterica serovars and in two subspecies with either chromosomal or plasmid-borne localization. It displays high conservation of its sequence within the genus, and we demonstrated that most of the allelic variations identified did not alter the virulence properties of the protein. However, we demonstrated the importance of the residue at position 38 (at the level of the first extracellular loop of the protein) in the invasin function of Rck. Altogether, our results highlight that rck is not restricted to the three formerly identified serovars and could therefore have a more important role in virulence than previously expected. Moreover, this work raises questions about the mechanisms involved in rck acquisition and about virulence plasmid distribution and evolution. IMPORTANCE The foodborne pathogen Salmonella is responsible for a wide variety of pathologies depending on the infected host, the infecting serovars, and its set of virulence factors. However, the implication of each of these virulence factors and their role in the specific host-pathogen interplay are not fully understood. The significance of our research is in determining the distribution of one of these factors, the virulence plasmid-encoded invasin and resistance to complement killing protein Rck. In addition to providing elements of reflection concerning the mechanisms of acquisition of specific virulence genes in certain serotypes, this work will help to understand the role of Rck in the pathogenesis of Salmonella.
Collapse
|
8
|
Pearce ME, Langridge GC, Lauer AC, Grant K, Maiden MCJ, Chattaway MA. An evaluation of the species and subspecies of the genus Salmonella with whole genome sequence data: Proposal of type strains and epithets for novel S. enterica subspecies VII, VIII, IX, X and XI. Genomics 2021; 113:3152-3162. [PMID: 34242711 PMCID: PMC8426187 DOI: 10.1016/j.ygeno.2021.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
Species and subspecies within the Salmonella genus have been defined for public health purposes by biochemical properties; however, reference laboratories have increasingly adopted sequence-based, and especially whole genome sequence (WGS), methods for surveillance and routine identification. This leads to potential disparities in subspecies definitions, routine typing, and the ability to detect novel subspecies. A large-scale analysis of WGS data from the routine sequencing of clinical isolates was employed to define and characterise Salmonella subspecies population structure, demonstrating that the Salmonella species and subspecies were genetically distinct, including those previously identified through phylogenetic approaches, namely: S. enterica subspecies londinensis (VII), subspecies brasiliensis (VIII), subspecies hibernicus (IX) and subspecies essexiensis (X). The analysis also identified an additional novel subspecies, reptilium (XI). Further, these analyses indicated that S. enterica subspecies arizonae (IIIa) isolates were divergent from the other S. enterica subspecies, which clustered together and, on the basis of ANI analysis, subspecies IIIa was sufficiently distinct to be classified as a separate species, S. arizonae. Multiple phylogenetic and statistical approaches generated congruent results, suggesting that the proposed species and subspecies structure was sufficiently biologically robust for routine application. Biochemical analyses demonstrated that not all subspecies were distinguishable by these means and that biochemical approaches did not capture the genomic diversity of the genus. We recommend the adoption of standardised genomic definitions of species and subspecies and a genome sequence-based approach to routine typing for the identification and definition of novel subspecies. A large-scale analysis of genomic data demonstrate Salmonella species and subspecies are genetically distinct. Biochemical analysis does not capture the genomic diversity of the Salmonella genus but routine species and subspecies identification can be achieved with rMLST Average Nucleotide Identify (ANI) with a 95% criteria was suitable to distinguish species and 98% to distinguish subspecies. Five novel S. enteric subspecies (VII-XI) type strains are defined. Reclassification of S. arizonae as a separate species is recommended.
Collapse
Affiliation(s)
- Madison E Pearce
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom
| | - Gemma C Langridge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom.
| | - A C Lauer
- Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, 1600 Clifton RD NE, Atlanta, GA 30329, USA.
| | - Kathie Grant
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| | - Marie A Chattaway
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| |
Collapse
|
9
|
The Changing Face of the Family Enterobacteriaceae (Order: " Enterobacterales"): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin Microbiol Rev 2021; 34:34/2/e00174-20. [PMID: 33627443 DOI: 10.1128/cmr.00174-20] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The family Enterobacteriaceae has undergone significant morphogenetic changes in its more than 85-year history, particularly during the past 2 decades (2000 to 2020). The development and introduction of new and novel molecular methods coupled with innovative laboratory techniques have led to many advances. We now know that the global range of enterobacteria is much more expansive than previously recognized, as they play important roles in the environment in vegetative processes and through widespread environmental distribution through insect vectors. In humans, many new species have been described, some associated with specific disease processes. Some established species are now observed in new infectious disease settings and syndromes. The results of molecular taxonomic and phylogenetics studies suggest that the current family Enterobacteriaceae should possibly be divided into seven or more separate families. The logarithmic explosion in the number of enterobacterial species described brings into question the relevancy, need, and mechanisms to potentially identify these taxa. This review covers the progression, transformation, and morphogenesis of the family from the seminal Centers for Disease Control and Prevention publication (J. J. Farmer III, B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, et al., J Clin Microbiol 21:46-76, 1985, https://doi.org/10.1128/JCM.21.1.46-76.1985) to the present.
Collapse
|
10
|
Shariat NW, Timme RE, Walters AT. Phylogeny of Salmonella enterica subspecies arizonae by whole-genome sequencing reveals high incidence of polyphyly and low phase 1 H antigen variability. Microb Genom 2021; 7. [PMID: 33539276 PMCID: PMC8208698 DOI: 10.1099/mgen.0.000522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Salmonella enterica subspecies arizonae is frequently associated with animal reservoirs, particularly reptiles, and can cause illness in some mammals, including humans. Using whole-genome sequencing data, core genome phylogenetic analyses were performed using 112 S. enterica subsp. arizonae isolates, representing 46 of 102 described serovars. Nearly one-third of these are polyphyletic, including two serovars that appear in four and five distinct evolutionary lineages. Subspecies arizonae has a monophasic H antigen. Among the 46 serovars investigated, only 8 phase 1 H antigens were identified, demonstrating high conservation for this antigen. Prophages and plasmids were found throughout this subspecies, including five novel prophages. Polyphyly was also reflected in prophage content, although some clade-specific enrichment for some phages was observed. IncFII(S) was the most frequent plasmid replicon identified and was found in a quarter of S. enterica subsp. arizonae genomes. Salmonella pathogenicity islands (SPIs) 1 and 2 are present across all Salmonella, including this subspecies, although effectors sipA, sptP and arvA in SPI-1 and sseG and ssaI in SPI-2 appear to be lost in this lineage. SPI-20, encoding a type VI secretion system, is exclusive to this subspecies and is well maintained in all genomes sampled. A number of fimbral operons were identified, including the sas operon that appears to be a synapomorphy for this subspecies, while others exhibited more clade-specific patterns. This work reveals evolutionary patterns in S. enterica subsp. arizonae that make this subspecies a unique lineage within this very diverse species.
Collapse
Affiliation(s)
- Nikki W. Shariat
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- *Correspondence: Nikki W. Shariat,
| | - Ruth E. Timme
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Abigail T. Walters
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Luhmann N, Holley G, Achtman M. BlastFrost: fast querying of 100,000s of bacterial genomes in Bifrost graphs. Genome Biol 2021; 22:30. [PMID: 33430919 PMCID: PMC7798312 DOI: 10.1186/s13059-020-02237-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
BlastFrost is a highly efficient method for querying 100,000s of genome assemblies, building on Bifrost, a dynamic data structure for compacted and colored de Bruijn graphs. BlastFrost queries a Bifrost data structure for sequences of interest and extracts local subgraphs, enabling the identification of the presence or absence of individual genes or single nucleotide sequence variants. We show two examples using Salmonella genomes: finding within minutes the presence of genes in the SPI-2 pathogenicity island in a collection of 926 genomes and identifying single nucleotide polymorphisms associated with fluoroquinolone resistance in three genes among 190,209 genomes. BlastFrost is available at https://github.com/nluhmann/BlastFrost/tree/master/data .
Collapse
Affiliation(s)
- Nina Luhmann
- Warwick Medical School, University of Warwick, Coventry, UK.
| | - Guillaume Holley
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavík, Iceland
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
12
|
Park CJ, Li J, Zhang X, Gao F, Benton CS, Andam CP. Diverse lineages of multidrug resistant clinical Salmonella enterica and a cryptic outbreak in New Hampshire, USA revealed from a year-long genomic surveillance. INFECTION GENETICS AND EVOLUTION 2020; 87:104645. [PMID: 33246085 DOI: 10.1016/j.meegid.2020.104645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 01/02/2023]
Abstract
Salmonella enterica, the causative agent of gastrointestinal diseases and typhoid fever, is a human and animal pathogen that causes significant mortality and morbidity worldwide. In this study, we examine the genomic diversity and phylogenetic relationships of 63 S. enterica isolates from human-derived clinical specimens submitted to the Department of Health and Human Services (DHHS) in the state of New Hampshire, USA in 2017. We found a remarkably large genomic, phylogenetic and serotype variation among the S. enterica isolates, dominated by serotypes Enteritidis (sequence type [ST] 11), Heidelberg (ST 15) and Typhimurium (ST 19). Analysis of the distribution of single nucleotide polymorphisms in the core genome suggests that the ST 15 cluster is likely a previously undetected or cryptic outbreak event that occurred in the south/southeastern part of New Hampshire in August-September. We found that nearly all of the clinical S. enterica isolates carried horizontally acquired genes that confer resistance to multiple classes of antimicrobials, most notably aminoglycosides, fluoroquinolones and macrolides. Majority of the isolates (76.2%) carry at least four resistance determinants per genome. We also detected the genes mdtK and mdsABC that encode multidrug efflux pumps and the gene sdiA that encodes a regulator for a third multidrug resistance pump. Our results indicate rapid microevolution and geographical dissemination of multidrug resistant lineages over a short time span. These findings are critical to aid the DHHS and similar public health laboratories in the development of effective disease control measures, epidemiological studies and treatment options for serious Salmonella infections.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jinfeng Li
- New Hampshire Department of Health and Human Services, 29 Hazen Drive, Concord, NH, USA
| | - Xinglu Zhang
- New Hampshire Department of Health and Human Services, 29 Hazen Drive, Concord, NH, USA
| | - Fengxiang Gao
- New Hampshire Department of Health and Human Services, 29 Hazen Drive, Concord, NH, USA
| | - Christopher S Benton
- New Hampshire Department of Health and Human Services, 29 Hazen Drive, Concord, NH, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
13
|
Abstract
S. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments. Salmonella is responsible for many nontyphoidal foodborne infections and enteric (typhoid) fever in humans. Of the two Salmonella species, Salmonella enterica is highly diverse and includes 10 known subspecies and approximately 2,600 serotypes. Understanding the evolutionary processes that generate the tremendous diversity in Salmonella is important in reducing and controlling the incidence of disease outbreaks and the emergence of virulent strains. In this study, we aim to elucidate the impact of homologous recombination in the diversification of S. enterica subspecies. Using a data set of previously published 926 Salmonella genomes representing the 10 S. enterica subspecies and Salmonella bongori, we calculated a genus-wide pan-genome composed of 84,041 genes and the S. enterica pan-genome of 81,371 genes. The size of the accessory genomes varies between 12,429 genes in S. enterica subsp. arizonae (subsp. IIIa) to 33,257 genes in S. enterica subsp. enterica (subsp. I). A total of 12,136 genes in the Salmonella pan-genome show evidence of recombination, representing 14.44% of the pan-genome. We identified genomic hot spots of recombination that include genes associated with flagellin and the synthesis of methionine and thiamine pyrophosphate, which are known to influence host adaptation and virulence. Last, we uncovered within-species heterogeneity in rates of recombination and preferential genetic exchange between certain donor and recipient strains. Frequent but biased recombination within a bacterial species may suggest that lineages vary in their response to environmental selection pressure. Certain lineages, such as the more uncommon non-enterica subspecies (non-S. enterica subsp. enterica), may also act as a major reservoir of genetic diversity for the wider population. IMPORTANCES. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments.
Collapse
|