1
|
Rahmawaty A, Cheng LW, Wang PC, Chen SC. Comparative pathogenicity and histopathological analysis of Edwardsiella anguillarum intraperitoneal infection in milkfish (Chanos chanos), Nile tilapia (Oreochromis niloticus) and Asian seabass (Lates calcarifer). JOURNAL OF FISH DISEASES 2024; 47:e13982. [PMID: 38899543 DOI: 10.1111/jfd.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Edwardsiella anguillarum, a highly virulent species within the Edwardsiella genus, causes significant mortality in milkfish farms in Taiwan. This study aimed to investigate the comparison of milkfish susceptibility, a newly identified host species in Taiwanese aquaculture, with other species Nile tilapia (Oreochromis niloticus) and Asian seabass (Lates calcarifer), to E. anguillarum, elucidating its pathogenicity across both seawater and freshwater aquaculture environments. The results showed milkfish exhibited the highest mortality rate of 85% within 48 h of infection, whereas Nile tilapia exhibited a mortality rate of 70% between the second- and tenth-day post challenge, and seabass exhibited a mortality rate of 25% between the second- and sixth-day post challenge. Gross lesions observed in milkfish included splenomegaly and haemorrhage, whereas Nile tilapia exhibited signs of ascites, exophthalmia and brain haemorrhage. Seabass displayed spleen granulomas and haemorrhage at the injection site. Histopathological analysis revealed common features across all three species, including multifocal necrosis, bacterial presence in the necrotic areas, serositis and oedema. Asian seabass also exhibited chronic lesions in the form of splenic granulomas. This study highlights the high susceptibility of milkfish and Nile tilapia to E. anguillarum, emphasizing the urgent need for further investigation into targeted vaccine development for these fish species. These results not only deepen our understanding of the differing levels of pathogenicity among the three species but also offer valuable insights for improving disease prevention and management strategies in aquaculture, including those applied within polyculture systems and for the maintenance of aquaculture water environments.
Collapse
Affiliation(s)
- Atiek Rahmawaty
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
2
|
Byadgi OV, Rahmawaty A, Wang PC, Chen SC. Comparative genomics of Edwardsiella anguillarum and Edwardsiella piscicida isolated in Taiwan enables the identification of distinctive features and potential virulence factors using Oxford-Nanopore MinION® sequencing. JOURNAL OF FISH DISEASES 2023; 46:287-297. [PMID: 36571326 DOI: 10.1111/jfd.13743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Edwardsiella tarda (ET) and Edwardsiella anguillarum (EA) are the most harmful bacterial fish pathogens in Taiwan. However, there is confusion regarding the genotypic identification of E. tarda and E. piscicida (EP). Therefore, we used a novel Nanopore MinION MK1C platform to sequence and compare the complete genomes of E. piscicida and E. anguillarum. The number of coding genes, rRNA, and tRNA recorded for E. anguillarum and E. piscicida were 8322, 25, and 98, and 5458, 25, and 98, respectively. Ribosomal multilocus sequence typing (rMLST) for E. piscicida indicated 35 rps. The shared clusters between E. anguillarum and E. piscicida indicated several unique clusters for the individual genomes. The phylogenetic tree analysis for all complete genomes indicated that E. anguillarum and E. piscicida were placed into two species-specific genotypes. Distribution of subsystems for annotated genomes found that genes related to virulence, defence, and disease for E. anguillarum were 103 and those for E. piscicida were 60 and pathogenic islands (PI) were 498 and 225, respectively. Vaccine candidates were identified in silico from the core genes using high antigenic, solubility, and secretion probabilities. Altogether, the genome data revealed distinctive features between E. anguillarum and E. piscicida, which suggest different pathogenicity and thus the need for separate preventive strategies.
Collapse
Affiliation(s)
- Omkar Vijay Byadgi
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Atiek Rahmawaty
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
3
|
Rehman MNU, Dawar FU, Zeng J, Fan L, Feng W, Wang M, Yang N, Guo G, Zheng J. Complete genome sequence analysis of Edwardsiella tarda SC002 from hatchlings of Siamese crocodile. Front Vet Sci 2023; 10:1140655. [PMID: 36968469 PMCID: PMC10034365 DOI: 10.3389/fvets.2023.1140655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023] Open
Abstract
Edwardsiella tarda is a Gram-negative, facultative anaerobic rod-shaped bacterium and the causative agent of the systemic disease “Edwardsiellosis”. It is commonly prevalent in aquatic organisms with subsequent economic loss and hence has attracted increasing attention from researchers. In this study, we investigated the complete genome sequence of a highly virulent isolate Edwardsiella tarda SC002 isolated from hatchlings of the Siamese crocodile. The genome of SC002 consisted of one circular chromosome of length 3,662,469 bp with a 57.29% G+C content and four novel plasmids. A total of 3,734 protein-coding genes, 12 genomic islands (GIs), 7 prophages, 48 interspersed repeat sequences, 248 tandem repeat sequences, a CRISPR component with a total length of 175 bp, and 171 ncRNAs (tRNA = 106, sRNA = 37, and rRNA = 28) were predicted. In addition, the coding genes of assembled genome were successfully annotated against eight general databases (NR = 3,618/3,734, COG = 2,947/3,734, KEGG = 3,485/3,734, SWISS-PROT = 2,787/3,734, GO = 2,648/3,734, Pfam = 2,648/3,734, CAZy = 130/3,734, and TCDB = 637/3,734) and four pathogenicity-related databases (ARDB = 11/3,734, CARD = 142/3,734, PHI = 538/3,734, and VFDB = 315/3,734). Pan-genome and comparative genome analyses of the complete sequenced genomes confirmed their evolutionary relationships. The present study confirmed that E. tarda SC002 is a potential pathogen bearing a bulk amount of antibiotic resistance, virulence, and pathogenic genes and its open pan-genome may enhance its host range in the future.
Collapse
Affiliation(s)
- Muhammad Nafees Ur Rehman
- Laboratory of Microbiological Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, China
| | - Farman Ullah Dawar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Jifeng Zeng
- Laboratory of Microbiological Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Lixia Fan
- Laboratory of Microbiological Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, China
| | - Wei Feng
- Laboratory of Microbiological Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, China
| | - Mengqi Wang
- Laboratory of Microbiological Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, China
| | - Nuo Yang
- Laboratory of Microbiological Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, China
| | - Guiying Guo
- Laboratory of Microbiological Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, China
| | - Jiping Zheng
- Laboratory of Microbiological Engineering (Infection and Immunity), School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
- *Correspondence: Jiping Zheng
| |
Collapse
|
4
|
Leung KY, Wang Q, Zheng X, Zhuang M, Yang Z, Shao S, Achmon Y, Siame BA. Versatile lifestyles of Edwardsiella: Free-living, pathogen, and core bacterium of the aquatic resistome. Virulence 2022; 13:5-18. [PMID: 34969351 PMCID: PMC9794015 DOI: 10.1080/21505594.2021.2006890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Edwardsiella species in aquatic environments exist either as individual planktonic cells or in communal biofilms. These organisms encounter multiple stresses, include changes in salinity, pH, temperature, and nutrients. Pathogenic species such as E. piscicida, can multiply within the fish hosts. Additionally, Edwardsiella species (E. tarda), can carry antibiotic resistance genes (ARGs) on chromosomes and/or plasmids, that can be transmitted to the microbiome via horizontal gene transfer. E. tarda serves as a core in the aquatic resistome. Edwardsiela uses molecular switches (RpoS and EsrB) to control gene expression for survival in different environments. We speculate that free-living Edwardsiella can transition to host-living and vice versa, using similar molecular switches. Understanding such transitions can help us understand how other similar aquatic bacteria switch from free-living to become pathogens. This knowledge can be used to devise ways to slow down the spread of ARGs and prevent disease outbreaks in aquaculture and clinical settings.
Collapse
Affiliation(s)
- Ka Yin Leung
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel,CONTACT Ka Yin Leung
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China,Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, China,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Xiaochang Zheng
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China
| | - Mei Zhuang
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Zhiyun Yang
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yigal Achmon
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Bupe A. Siame
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada,Bupe A. Siame
| |
Collapse
|
5
|
Rahmawaty A, Chen MY, Byadgi OV, Wang PC, Chen SC. Phenotypic and genotypic analysis of Edwardsiella isolates from Taiwan indicates wide variation with a particular reference to Edwardsiella tarda and Edwardsiella anguillarum. JOURNAL OF FISH DISEASES 2022; 45:1659-1672. [PMID: 35916068 DOI: 10.1111/jfd.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Edwardsiella spp. is a gram-negative, facultatively anaerobic, intracellular bacteria threatening the aquaculture industry worldwide. Noticeably, E. tarda is now genotypically classified into three distinct groups (E. tarda, E. piscicida and E. anguillarum), but morphologically, it is unclear due to varying degrees of virulence in different fish hosts. Hence, to reclassify E. tarda, we investigated differences in genotypes, phenotypes and pathogenicity. We collected Edwardsiella isolates from five different counties of Taiwan between 2017 and 2021. At first, gyrB gene was amplified for a phylogenetic tree from 40 isolates from different fish and one reference isolate, BCRC10670, from the human. Thirty-nine strains clustered into E. anguillarum, 1 strain into E. piscicida and 1 strain into E. tarda from human strain. Second, all isolates were characterized using various phenotypic (API 20E biochemical profiles) and genotypic (pulsed-field gel electrophoresis [PFGE], and virulence-related gene detection). SpeI digestion revealed 10 pulsotypes and I-CeuI into 7 pulsotypes. Virulent genes (citC, gadB, katB, mukF and fimA) confirmed in 35, 31, 28, 37 and 38 isolates, respectively. Finally, in vivo challenge test in milkfish (Chanos chanos) indicated the highest mortality from E. anguillarum. Overall, results revealed unique features with Edwardsiella spp. genotypes and pathogenicity, which are relevant to the host and provide useful insights for future vaccine development.
Collapse
Affiliation(s)
- Atiek Rahmawaty
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mei-Yun Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Omkar Vijay Byadgi
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
6
|
Qi Z, Yan D, Cao L, Xu Y, Chang M. Zebrafish BID Exerts an Antibacterial Role by Negatively Regulating p53, but in a Caspase-8-Independent Manner. Front Immunol 2021; 12:707426. [PMID: 34531858 PMCID: PMC8439435 DOI: 10.3389/fimmu.2021.707426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
Bid (BH3-interacting domain death agonist), a member of the Bcl-2 family, plays a crucial role in the initiation of apoptosis. Independent of its apoptotic function, Bid is also involved in the regulation of inflammation and innate immunity. However, the role of Bid during bacterial pathogen infection remains unclear. In the present study, Bid of zebrafish (Dario rerio) was cloned and its functions during Edwardsiella ictaluri infection were investigated. Zebrafish Bid enhances the apoptosis rate of Epithelioma papulosum cyprini (EPC) cells following E. ictaluri infection. Importantly, in vitro and in vivo bacterial invasion assays showed that overexpressed Bid could significantly inhibit the invasion and proliferation of E. ictaluri. Real-time qPCR analysis revealed that p53 gene expression was downregulated in embryos microinjected with Bid-FLAG. Further, in vitro and in vivo bacterial invasion assays showed that overexpressed p53 increased the invasion and proliferation of E. ictaluri. Moreover, the invasion and proliferation of E. ictaluri were inhibited when co-overexpressing Bid and p53 in vivo and in vitro. Further, the numbers of E. ictaluri in larvae treated with Z-IETD-FMK (caspase-8 inhibitor) were higher than those of larvae without Z-IETD-FMK treatment, while the number of E. ictaluri in larvae microinjected with bid-Flag decreased significantly, even if the larvae were treated in advance with Z-IETD-FMK. Collectively, our study demonstrated a novel antibacterial activity of fish Bid, providing evidence for understanding the function of apoptosis associated gene in pathogen infection.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Dong Yan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Nguyen TT, Xuan TTT, Ngoc TH, Duyen LTM, Vinh TQ, My PDT, Hoang HA, Nga LP. Diverse Bacteriophages Infecting the Bacterial Striped Catfish Pathogen Edwardsiella ictaluri. Microorganisms 2021; 9:microorganisms9091830. [PMID: 34576725 PMCID: PMC8465730 DOI: 10.3390/microorganisms9091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages infecting Edwardsiella ictaluri have been less investigated, although the host bacterium is one of the most important fish pathogens causing enteric septicemia of catfish (ESC). We present here two distinctly novel bacteriophages vB_EiM_PVN06 and vB_EiA_PVN09 infecting Edwardsiella ictaluri E1, with their geographical origins from the Mekong Delta, Vietnam. Bacteriophage vB_EiM_PVN06 native to a mud sample reveals complete differences of biological properties with the phage vB_EiA_PVN09 originated from a viscus of a healthy catfish (Pangasianodon hypophthalmus) cultured in the same area. Morphological analyses combined with genomic data indicate that phage vB_EiM_PVN06 is classified to Myoviridae family and shares high similarity with E. ictaluri phage PEi21 genome, while vB_EiA_PVN09 is a member of Teseptimavirus genus, Autographiviridae family, and mostly closes to phage vB_EcoP_IME390. The vB_EiA_PVN09 is a T7-like bacteriophage, which has been firstly found infecting to E. ictaluri, and host range analysis also evidences for the cross-infection of this phage to Escherichia coli K12 and Escherichia coli DH5α. Together, our research highlights the diversity of bacteriophages infecting the pathogen E. ictaluri and suggests further explorations of lytic phages in environmental niches, to be exploited in feasible strategies of phage therapy in ESC disease control.
Collapse
Affiliation(s)
- Tan-Trung Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; (T.-T.N.); (T.T.T.X.); (T.H.N.); (L.T.M.D.); (T.Q.V.); (P.D.T.M.); (H.A.H.)
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Tran T. T. Xuan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; (T.-T.N.); (T.T.T.X.); (T.H.N.); (L.T.M.D.); (T.Q.V.); (P.D.T.M.); (H.A.H.)
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - To H. Ngoc
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; (T.-T.N.); (T.T.T.X.); (T.H.N.); (L.T.M.D.); (T.Q.V.); (P.D.T.M.); (H.A.H.)
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Le T. My Duyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; (T.-T.N.); (T.T.T.X.); (T.H.N.); (L.T.M.D.); (T.Q.V.); (P.D.T.M.); (H.A.H.)
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Tu Q. Vinh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; (T.-T.N.); (T.T.T.X.); (T.H.N.); (L.T.M.D.); (T.Q.V.); (P.D.T.M.); (H.A.H.)
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Pham D. T. My
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; (T.-T.N.); (T.T.T.X.); (T.H.N.); (L.T.M.D.); (T.Q.V.); (P.D.T.M.); (H.A.H.)
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Hoang A. Hoang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; (T.-T.N.); (T.T.T.X.); (T.H.N.); (L.T.M.D.); (T.Q.V.); (P.D.T.M.); (H.A.H.)
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Le P. Nga
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; (T.-T.N.); (T.T.T.X.); (T.H.N.); (L.T.M.D.); (T.Q.V.); (P.D.T.M.); (H.A.H.)
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
- Correspondence: ; Tel.: +84-902-966166
| |
Collapse
|
8
|
Comparative genomics of Edwardsiellaictaluri revealed four distinct host-specific genotypes and thirteen potential vaccine candidates. Genomics 2021; 113:1976-1987. [PMID: 33848586 DOI: 10.1016/j.ygeno.2021.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/31/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
Edwardsiella ictaluri has been considered an important threat for catfish aquaculture industry for more than 4 decades and an emerging pathogen of farmed tilapia but only 9 sequenced genomes were publicly available. We hereby report two new complete genomes of E. ictaluri originated from diseased hybrid red tilapia (Oreochromis sp.) and striped catfish (Pangasianodon hypophthalmus) in Southeast Asia. E. ictaluri species has an open pan-genome consisting of 2615 core genes and 5592 pan genes. Phylogenetic analysis using core genome MLST (cgMLST) and ANI values consistently placed E. ictaluri isolates into 4 host-specific genotypes. Presence of unique genes and absence of certain genes from each genotype provided potential biomarkers for further development of genotyping scheme. Vaccine candidates with high antigenic, solubility and secretion probabilities were identified in silico from the core genes. Microevolution within the species is brought about by bacteriophages and insertion elements and possibly drive host adaptation.
Collapse
|