1
|
Liu D, Huang F, Li Y, Mao L, He W, Wu S, Xia H, He P, Zheng H, Zhou Y, Zhao B, Ou X, Song Y, Song Z, Mei L, Liu L, Zhang G, Wei Q, Zhao Y. Transmission characteristics in Tuberculosis by WGS: nationwide cross-sectional surveillance in China. Emerg Microbes Infect 2024; 13:2348505. [PMID: 38686553 PMCID: PMC11097701 DOI: 10.1080/22221751.2024.2348505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
China, with the third largest share of global tuberculosis cases, faces a substantial challenge in its healthcare system as a result of the high burden of multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB). This study employs a genomic epidemiological approach to assess recent tuberculosis transmissions between individuals, identifying potential risk factors and discerning the role of transmitted resistant isolates in the emergence of drug-resistant tuberculosis in China. We conducted a population-based retrospective study on 5052 Mycobacterium tuberculosis (MTB) isolates from 70 surveillance sites using whole genome sequencing (WGS). Minimum spanning tree analysis identified resistance mutations, while epidemiological data analysis pinpointed transmission risk factors. Of the 5052 isolates, 23% (1160) formed 452 genomic clusters, with 85.6% (387) of the transmissions occurring within the same counties. Individuals with younger age, larger family size, new cases, smear positive, and MDR/RR were at higher odds for recent transmission, while higher education (university and above) and occupation as a non-physical workers emerged as protective factors. At least 61.4% (251/409) of MDR/RR-TB were likely a result of recent transmission of MDR/RR isolates, with previous treatment (crude OR = 2.77), smear-positive (cOR = 2.07) and larger family population (cOR = 1.13) established as risk factors. Our findings highlight that local transmission remains the predominant form of TB transmission in China. Correspondingly, drug-resistant tuberculosis is primarily driven by the transmission of resistant tuberculosis isolates. Targeted interventions for high-risk populations to interrupt transmission within the country will likely provide an opportunity to reduce the prevalence of both tuberculosis and drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Dongxin Liu
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Fei Huang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yaru Li
- Department of Nutrition, Beijing Friendship Hospital, Capital Medical University
| | - Lingfeng Mao
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, People’s Republic of China
| | - Wencong He
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Sihao Wu
- Joint Research Center for Molecular Diagnosis of Severe Infection in Children, Binjiang Institute of Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ping He
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yuanyuan Song
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zexuan Song
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Li Mei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Li Liu
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Saavedra B, Nguenha D, de la Torre-Pérez L, Mambuque E, Tembe G, Oliveras L, Rudd M, Philimone P, Jose B, Garcia JI, Gomes N, Munguambe S, Chiconela H, Nhanommbe M, Izco S, Acacio S, García-Basteiro AL. Improving tuberculosis case detection through contact risk stratification by Xpert MTB/RIF Ultra and spatial parameters: Evaluation of an innovative active case finding strategy in Mozambique (Xpatial-TB). PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002789. [PMID: 38335231 PMCID: PMC10857722 DOI: 10.1371/journal.pgph.0002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2023] [Indexed: 02/12/2024]
Abstract
Prompt diagnosis is critical for tuberculosis (TB) control, as it enables early treatment which in turn, reduces transmission and improves treatment outcomes. We investigated the impact on TB diagnosis of introducing Xpert Ultra as the frontline diagnostic test, combined with an innovative active-case finding (ACF) strategy (based on Xpert Ultra semi-quantitative results and spatial parameters), in a semi-rural district of Southern Mozambique. From January-December 2018 we recruited incident TB-cases (index cases, ICs) and their household contacts (HCs). Recruitment of close community contacts (CCs) depended on IC´s Xpert Ultra results, and the population density of their area. TB-contacts, either symptomatic or people living with HIV, were asked to provide a spot sputum for lab-testing. Trends on TB case notification were compared to the previous years and to those of two districts in the south of the Maputo province (control area), using an interrupted time series analysis with and without control (CITS/ITS). A total of 1010 TB ICs (37.1% laboratory-confirmed) were recruited; 3165 HCs and 4730 CCs were screened for TB. Eighty-nine additional TB cases were identified through the ACF intervention (52.8% laboratory-confirmed). The intervention increased by 8.2% all forms of TB cases detected in 2018. Xpert Ultra trace positive results accounted for a high proportion of laboratory confirmations in the ACF cohort (51.1% vs 13.7% of those passively diagnosed). The Number Needed to Screen to find a TB case differed widely among HCs (55) and CCs (153). During the intervention period, a reversal of the previous negative trend in lab-confirmed case notifications was observed in the district. However, the CITS model did not show any statistically significant difference compared to the control area. Paediatric population benefited the most from the ACF strategy and HCs screening seemed an effective intervention to find microbiological confirmed cases in early stages of the disease.
Collapse
Affiliation(s)
- Belén Saavedra
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Dinis Nguenha
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Laura de la Torre-Pérez
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Edson Mambuque
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Gustavo Tembe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Laura Oliveras
- Agència de Salut Pública de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau) Barcelona, Catalonia, Spain
| | - Matthew Rudd
- Department of Mathematics and Computer Science, The University of the South, Sewanee, Tennessee, United States of America
| | - Paulo Philimone
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Benedita Jose
- National Tuberculosis Control Programme, Maputo, Mozambique
| | - Juan Ignacio Garcia
- Population Health Program Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Neide Gomes
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Shilzia Munguambe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Helio Chiconela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- National Tuberculosis Control Programme, Maputo, Mozambique
| | - Milton Nhanommbe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Santiago Izco
- STD/HIV/Aids and Tuberculosis department, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Sozinho Acacio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alberto L. García-Basteiro
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Goroh MMD, van den Boogaard CHA, Lukman KA, Lowbridge C, Juin WK, William T, Jeffree MS, Ralph AP. Factors affecting implementation of tuberculosis contact investigation and tuberculosis preventive therapy among children in Sabah, East Malaysia: A qualitative study. PLoS One 2023; 18:e0285534. [PMID: 37167225 PMCID: PMC10174478 DOI: 10.1371/journal.pone.0285534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Contact investigation and TB preventive treatment of children under five years of age who are close contacts of a TB case is a key component of TB prevention. However, the uptake of TB preventive treatment is low in many high-TB burden settings. This study explores factors affecting the implementation of TB contact investigation and preventive treatment among children in Malaysia's city of Kota Kinabalu, Sabah State. This study was conducted in three primary health clinics between 2019 and 2020. We purposively sampled 34 parents and guardians of child contacts eligible for TB preventive treatment, and 25 healthcare providers involved in the management of child contacts. We conducted thematic analysis of semi-structured interviews and focus group discussions to illicit factors affecting implementation and uptake of TB contact investigation and TB preventive therapy. Six main themes emerged from the analyses-four of these relating to contact investigation and two relating to TB preventive therapy. Factors affecting TB contact investigation were addressed under system related factors (external factors, stakeholder collaboration, healthcare workers' and clients' concerns), clinic related factors (perceived performance, clinic schedule, and space), healthcare worker related factors (cooperation, commitment, knowledge, misconception, counselling and communication) and patient and contact related factors (cooperation and commitment). Factors affecting TB preventive treatment delivery were addressed under guardian related factors (cooperation, commitment, knowledge and misconception) and treatment related factors (child-friendly form and adverse effects). To address gaps and barriers identified in our study, we recommend developing system capacity to maintain routine contact investigation and preventive treatment in the context of external program risks, providing training to healthcare workers to address misconceptions, safeguarding vulnerable clients against the risk of detention and deportation while accessing care, ensuring public and private services are provided regardless of migration status, and improving processes and resources for contact investigation and preventive treatment.
Collapse
Affiliation(s)
- Michelle May D Goroh
- Department of Public Health Medicine, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Khamisah Awang Lukman
- Department of Public Health Medicine, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Wong Ke Juin
- Sabah Women and Children's Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Gleneagles Hospital Kota Kinabalu, Kota Kinabalu, Sabah, Malaysia
| | - Mohammad Saffree Jeffree
- Department of Public Health Medicine, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Anna P Ralph
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| |
Collapse
|
4
|
Netikul T, Thawornwattana Y, Mahasirimongkol S, Yanai H, Maung HMW, Chongsuvivatwong V, Palittapongarnpim P. Whole-genome single nucleotide variant phylogenetic analysis of Mycobacterium tuberculosis Lineage 1 in endemic regions of Asia and Africa. Sci Rep 2022; 12:1565. [PMID: 35091638 PMCID: PMC8799649 DOI: 10.1038/s41598-022-05524-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) lineage 1 (L1) contributes considerably to the disease morbidity. While whole genome sequencing (WGS) is increasingly used for studying Mtb, our understanding of genetic diversity of L1 remains limited. Using phylogenetic analysis of WGS data from endemic range in Asia and Africa, we provide an improved genotyping scheme for L1. Mapping deletion patterns of the 68 direct variable repeats (DVRs) in the CRISPR region of the genome onto the phylogeny provided supporting evidence that the CRISPR region evolves primarily by deletion, and hinted at a possible Southeast Asian origin of L1. Both phylogeny and DVR patterns clarified some relationships between different spoligotypes, and highlighted the limited resolution of spoligotyping. We identified a diverse repertoire of drug resistance mutations. Altogether, this study demonstrates the usefulness of WGS data for understanding the genetic diversity of L1, with implications for public health surveillance and TB control. It also highlights the need for more WGS studies in high-burden but underexplored regions.
Collapse
Affiliation(s)
- Thidarat Netikul
- Faculty of Medicine, Siam University, Phet Kasem Road, Bangkok, Thailand
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Hideki Yanai
- Fukujuji Hospital and Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, 204-8533, Japan
| | - Htet Myat Win Maung
- National TB Control Programme, Department of Public Health, Ministry of Health and Sports, Naypyitaw, 15011, Myanmar
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Had Yai, 90110, Thailand
| | | | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand.
- National Science and Technology Development Agency, Pathumthani, Thailand.
| |
Collapse
|