1
|
Yang Q, Wang X, Han M, Sheng H, Sun Y, Su L, Lu W, Li M, Wang S, Chen J, Cui S, Yang BW. Bacterial genome-wide association studies: exploring the genetic variation underlying bacterial phenotypes. Appl Environ Microbiol 2025:e0251224. [PMID: 40377303 DOI: 10.1128/aem.02512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
With the continuous advancements in high-throughput genome sequencing technologies and the development of innovative bioinformatics tools, bacterial genome-wide association studies (BGWAS) have emerged as a transformative approach for investigating the genetic variations underlying diverse bacterial phenotypes at the population genome level. This review provides a comprehensive overview of the application of BGWAS in elucidating genetic determinants of bacterial drug resistance, pathogenicity, host specificity, biofilm formation, and probiotic fermentation characteristics. We systematically summarize the BGWAS workflow, including study design, data analysis pipelines, and the bioinformatics software employed at various stages. Furthermore, we highlight specialized tools tailored for BGWAS and discuss their unique features and applications. We also discuss confounding factors that can influence the accuracy and reliability of BGWAS results, including population structure, linkage disequilibrium, and multiple testing. By incorporating recent advancements, this review serves as a comprehensive reference for researchers utilizing BGWAS to uncover the genetic basis of bacterial phenotypes.
Collapse
Affiliation(s)
- Qiuping Yang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Yulu Sun
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Wenjing Lu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Bao-Wei Yang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| |
Collapse
|
2
|
Ray S, Flemming LK, Scudder CJ, Ly MA, Porterfield HS, Smith RD, Clark AE, Johnson JK, Das S. Comparative phenotypic and genotypic antimicrobial susceptibility surveillance in Achromobacter spp. through whole genome sequencing. Microbiol Spectr 2025; 13:e0252724. [PMID: 40013782 PMCID: PMC11960112 DOI: 10.1128/spectrum.02527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
Treatment of Achromobacter infections remains challenging due to intrinsic and acquired resistance to commonly used antimicrobial agents and no established clinical breakpoints. We attempted accurate species-level identification and compared the presence of genotypic resistance markers to phenotypic susceptibility patterns in retrospectively collected clinical isolates of Achromobacter spp. Our study concludes that Achromobacter xylosoxidans is the most prevalent species. Commercial matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) systems cannot accurately identify all Achromobacter species due to the limited inclusion of spectra in the databases. Phenotypic antimicrobial susceptibility testing (AST) confirms resistance to the majority of antibiotics tested. Newer agents like delafloxacin, plazomicin, and omadacycline showed little or no activity, while minimum inhibitory concentrations were low for eravacycline. In general, the species other than A. xylosoxidans showed lower MIC50 and MIC90, especially to carbapenems and β-lactamase inhibitor combinations like piperacillin-tazobactam, meropenem-vaborbactam, and imipenem-relebactam. Genotypic analysis confirmed that A. xylosoxidans carries a high number of resistance genes, including multidrug efflux pump AxyXY-OprZ, several class D (OXA-type), and the Class A ß-lactamase blaAXC, while Achromobacter mucicolens has the lowest number of resistance genes and no efflux pumps. This study concludes that there is significant genotypic and phenotypic diversity within the different species of Achromobacter, which are important for the identification of the species and for appropriate antimicrobial therapy.IMPORTANCEIdentification and susceptibility testing of Gram-negative non-fermenting bacteria belonging to the genus Achromobacter is difficult due to the lack of robust databases in commercial identification systems such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and clinical breakpoints for antimicrobial agents. Most clinical laboratories interpret minimum inhibitory concentration data using the "non-Enterobacterales" breakpoints included in the Clinical and Laboratory Standards Institute (CLSI) M100. These are breakpoints used for a group of organisms for which data is insufficient to provide species-specific interpretation. Our study provides phenotypic data regarding identification and susceptibility testing and correlates this with the genotypic characterization of 109 clinical isolates belonging to Achromobacter spp. This comprehensive study sheds light on the phenotypic and genotypic character of this bacteria, that is of increasing clinical relevance in hospital-acquired infections.
Collapse
Affiliation(s)
- Sreejana Ray
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Laurie K. Flemming
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Chelsea J. Scudder
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa A. Ly
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Harry S. Porterfield
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard D. Smith
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew E. Clark
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J. Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sanchita Das
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Olbrecht M, Echahidi F, Piérard D, Peeters C, Vandamme P, Wybo I, Demuyser T. In Vitro Susceptibility of Achromobacter Species Isolated from Cystic Fibrosis Patients: a 6-Year Survey. Antimicrob Agents Chemother 2023; 67:e0037923. [PMID: 37310234 PMCID: PMC10353363 DOI: 10.1128/aac.00379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
We conducted in vitro antimicrobial susceptibility testing of 267 Achromobacter isolates for 16 antibiotics from 2017 to 2022. The highest susceptibility was found for piperacillin-tazobactam (70%) and ceftazidime-avibactam (62%). Between 30% and 49% of strains were susceptible to tigecycline, ceftazidime, and meropenem. We applied species-specific Achromobacter xylosoxidans breakpoints for piperacillin-tazobactam, meropenem, and trimethoprim-sulfamethoxazole and EUCAST pharmacokinetic/pharmacodynamic (PK/PD) breakpoints for the others. A. xylosoxidans was the most frequently isolated species, followed by Achromobacter insuavis and Achromobacter ruhlandii.
Collapse
Affiliation(s)
- Margo Olbrecht
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fedoua Echahidi
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Denis Piérard
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Ingrid Wybo
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Thomas Demuyser
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- AIMS lab, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Chen J, Ke Y, Zhu Y, Chen X, Xie S. Deciphering of sulfonamide biodegradation mechanism in wetland sediments: from microbial community and individual populations to pathway and functional genes. WATER RESEARCH 2023; 240:120132. [PMID: 37257294 DOI: 10.1016/j.watres.2023.120132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Figuring out the comprehensive metabolic mechanism of sulfonamide antibiotics (SA) is critical to improve and optimize SA removal in the bioremediation process, but relevant studies are still lacking. Here, an approach integrating metagenomic analysis, degraders' isolation, reverse transcriptional quantification and targeted metabolite determination was used to decipher microbial interactions and functional genes' characteristics in SA-degrading microbial consortia enriched from wetland sediments. The SA-degrading consortia could rapidly catalyze ipso-hydroxylation and subsequent reactions of SA to achieve the complete mineralization of sulfadiazine and partial mineralization of the other two typical SA (sulfamethoxazole and sulfamethazine). Paenarthrobacter, Achromobacter, Pseudomonas and Methylobacterium were identified as the primary participants for the initial transformation of SA. Among them, Methylobacterium could metabolize the heterocyclic intermediate of sulfadiazine (2-aminopyrimidine), and the owning of sadABC genes (SA degradation genes) made Paenarthrobacter have relatively higher SA-degrading activity. Besides, the coexistence of sadABC genes and sul1 gene (SA resistance gene) gave Paenarthrobacter a dual resistance mechanism to SA. The results of reverse transcription quantification further demonstrated that the activity of sadA gene was related to the biodegradation of SA. Additionally, sadABC genes were relatively conserved in a few Microbacteriaceae and Micrococcaceae SA-degraders, but the multiple recombination events caused by densely nested transposase encoding genes resulted in the differential sequence of sadAB genes in Paenarthrobacter genome. These new findings provide valuable information for the selection and construction of engineered microbiomes.
Collapse
Affiliation(s)
- Jianfei Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Selection of Relevant Bacterial Strains for Novel Therapeutic Testing: a Guidance Document for Priority Cystic Fibrosis Lung Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
People with cystic fibrosis (CF) suffer chronic lung infections with a range of antimicrobial-resistant bacterial pathogens. There is an urgent need for researchers to develop novel anti-infectives to treat these problematic infections, but how can we select bacterial strains which are relevant for robust testing and comparative research?
Recent Findings
Pseudomonas aeruginosa, Burkholderia cepacia complex and Burkholderia gladioli, Mycobacterium abscessus complex, Staphylococcus aureus, Haemophilus influenza, and several multidrug-resistant Gram-negative species were selected as key CF infections that urgently require new therapeutics. Reference isolates and strain panels were identified, and a summary of the known genotypic diversity of each pathogen was provided.
Summary
Here, we summarise the current strain resources available for priority CF bacterial pathogens and highlight systematic selection criteria that researchers can use to select strains for use in therapeutic testing.
Collapse
|