1
|
Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Phenotypic and molecular characterization of extended spectrum- and metallo- beta lactamase producing Pseudomonas aeruginosa clinical isolates from Egypt. Infection 2024; 52:2399-2414. [PMID: 38824475 PMCID: PMC11621155 DOI: 10.1007/s15010-024-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Antimicrobial resistance among Pseudomonas aeruginosa (P. aeruginosa), a leading cause of nosocomial infections worldwide, is escalating. This study investigated the prevalence of extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) among 104 P. aeruginosa clinical isolates from Alexandria Main University Hospital, Alexandria, Egypt. METHODS Antimicrobial susceptibility testing was performed using agar dilution technique, or broth microdilution method in case of colistin. ESBL and MBL prevalence was assessed phenotypically and genotypically using polymerase chain reaction (PCR). The role of plasmids in mediating resistance to extended-spectrum β-lactams was studied via transformation technique using plasmids isolated from ceftazidime-resistant isolates. RESULTS Antimicrobial susceptibility testing revealed alarming resistance rates to carbapenems, cephalosporins, and fluoroquinolones. Using PCR as the gold standard, phenotypic methods underestimated ESBL production while overestimating MBL production. Eighty-five isolates (81.7%) possessed only ESBL encoding genes, among which 69 isolates harbored a single ESBL gene [blaOXA-10 (n = 67) and blaPER (n = 2)]. Four ESBL-genotype combinations were detected: blaPER + blaOXA-10 (n = 8), blaVEB-1 + blaOXA-10 (n = 6), blaPSE + blaOXA-10 (n = 1), and blaPER + blaVEB-1 + blaOXA-10 (n = 1). Three isolates (2.9%) possessed only the MBL encoding gene blaVIM. Three ESBL + MBL- genotype combinations: blaOXA-10 + blaAIM, blaOXA-10 + blaVIM, and blaPER + blaOXA-10 + blaAIM were detected in 2, 1 and 1 isolate(s), respectively. Five plasmid preparations harboring blaVEB-1 and blaOXA-10 were successfully transformed into chemically competent Escherichia coli DH5α with transformation efficiencies ranging between 6.8 × 10 3 and 3.7 × 10 4 CFU/μg DNA plasmid. Selected tested transformants were ceftazidime-resistant and harbored plasmids carrying blaOXA-10. CONCLUSIONS The study highlights the importance of the expeditious characterization of ESBLs and MBLs using genotypic methods among P. aeruginosa clinical isolates to hinder the development and dissemination of multidrug resistant strains.
Collapse
Affiliation(s)
- Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt.
| | - Marwa R El Shehawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Elsayed Aboulmagd
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
- College of Pharmacy, Arab Academy for Science, Technology and Maritime, Alamein Branch, Alamein, Egypt
| |
Collapse
|
2
|
Yang J, Xu JF, Liang S. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Crit Rev Microbiol 2024:1-19. [PMID: 39556143 DOI: 10.1080/1040841x.2024.2429599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Pseudomonas aeruginosa, able to survive on the surfaces of medical devices, is a life-threatening pathogen that mainly leads to nosocomial infection especially in immunodeficient and cystic fibrosis (CF) patients. The antibiotic resistance in P. aeruginosa has become a world-concerning problem, which results in reduced and ineffective therapy efficacy. Besides intrinsic properties to decrease the intracellular content and activity of antibiotics, P. aeruginosa develops acquired resistance by gene mutation and acquisition, as well as adaptive resistance under specific situations. With in-depth research on drug resistance mechanisms and the development of biotechnology, innovative strategies have emerged and yielded benefits such as screening for new antibiotics based on artificial intelligence technology, utilizing drugs synergistically, optimizing administration, and developing biological therapy. This review summarizes the recent advances in the mechanisms of antibiotic resistance and emerging treatments for combating resistance, aiming to provide a reference for the development of therapy against drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jian Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Le Terrier C, Freire S, Viguier C, Findlay J, Nordmann P, Poirel L. Relative inhibitory activities of the broad-spectrum β-lactamase inhibitor xeruborbactam in comparison with taniborbactam against metallo-β-lactamases produced in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0157023. [PMID: 38727224 PMCID: PMC11620488 DOI: 10.1128/aac.01570-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 12/07/2024] Open
Abstract
Xeruborbactam is a newly developed β-lactamase inhibitor designed for metallo-β-lactamases (MBLs). This study assessed the relative inhibitory properties of this novel inhibitor in comparison with another MBL inhibitor, namely taniborbactam (TAN), against a wide range of acquired MBL produced either in Escherichia coli or Pseudomonas aeruginosa. As observed with taniborbactam, the combination of xeruborbactam (XER) with β-lactams, namely, ceftazidime, cefepime and meropenem, led to significantly decreased MIC values for a wide range of B1-type MBL-producing E. coli, including most recombinant strains producing NDM, VIM, IMP, GIM-1, and DIM-1 enzymes. Noteworthily, while TAN-based combinations significantly reduced MIC values of β-lactams for MBL-producing P. aeruginosa recombinant strains, those with XER were much less effective. We showed that this latter feature was related to the MexAB-OprM efflux pump significantly impacting MIC values when testing XER-based combinations in P. aeruginosa. The relative inhibitory concentrations (IC50 values) were similar for XER and TAN against NDM and VIM enzymes. Noteworthily, XER was effective against NDM-9, NDM-30, VIM-83, and most of IMP enzymes, although those latter enzymes were considered resistant to TAN. However, no significant inhibition was observed with XER against IMP-10, SPM-1, and SIM-1 as well as the representative subclass B2 and B3 enzymes, PFM-1 and AIM-1. The determination of the constant inhibition (Ki) of XER revealed a much higher value against IMP-10 than against NDM-1, VIM-2, and IMP-1. Hence, IMP-10 that differs from IMP-1 by a single amino-acid substitution (Val67Phe) can, therefore, be considered resistant to XER.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Division of Intensive care unit, University hospitals of Geneva, Geneva, Switzerland
| | - Samanta Freire
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Clément Viguier
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Infectious Disease Department, University hospital of Toulouse, Toulouse, France
| | - Jacqueline Findlay
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| |
Collapse
|
4
|
Wang Y, Sapula SA, Whittall JJ, Blaikie JM, Lomovskaya O, Venter H. Identification and characterization of CIM-1, a carbapenemase that adds to the family of resistance factors against last resort antibiotics. Commun Biol 2024; 7:282. [PMID: 38454015 PMCID: PMC10920655 DOI: 10.1038/s42003-024-05940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
The increasing rate of carbapenem-resistant bacteria within healthcare environments is an issue of great concern that needs urgent attention. This resistance is driven by metallo-β-lactamases (MBLs), which can catalyse the hydrolysis of almost all clinically available β-lactams and are resistant to all the clinically utilized β-lactamase inhibitors. In this study, an uncharacterized MBL is identified in a multidrug resistant isolate of the opportunistic pathogen, Chryseobacterium indologenes. Sequence analysis predicts this MBL (CIM-1) to be a lipoprotein with an atypical lipobox. Characterization of CIM-1 reveals it to be a high-affinity carbapenemase with a broad spectrum of activity that includes all cephalosporins and carbapenems. Results also shown that CIM-1 is potentially a membrane-associated MBL with an uncharacterized lipobox. Using prediction tools, we also identify more potentially lipidated MBLs with non-canonical lipoboxes highlighting the necessity of further investigation of lipidated MBLs.
Collapse
Affiliation(s)
- Yu Wang
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- School of Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Sylvia A Sapula
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jonathan J Whittall
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jack M Blaikie
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | | | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
5
|
Sapula SA, Amsalu A, Whittall JJ, Hart BJ, Siderius NL, Nguyen L, Gerber C, Turnidge J, Venter H. The scope of antimicrobial resistance in residential aged care facilities determined through analysis of Escherichia coli and the total wastewater resistome. Microbiol Spectr 2023; 11:e0073123. [PMID: 37787536 PMCID: PMC10715142 DOI: 10.1128/spectrum.00731-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/07/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Antimicrobial resistance (AMR) is a global threat that imposes a heavy burden on our health and economy. Residential aged care facilities (RACFs), where frequent inappropriate antibiotic use creates a selective environment that promotes the development of bacterial resistance, significantly contribute to this problem. We used wastewater-based epidemiology to provide a holistic whole-facility assessment and comparison of antimicrobial resistance in two RACFs and a retirement village. Resistant Escherichia coli, a common and oftentimes problematic pathogen within RACFs, was isolated from the wastewater, and the phenotypic and genotypic AMR was determined for all isolates. We observed a high prevalence of an international high-risk clone, carrying an extended-spectrum beta-lactamase in one facility. Analysis of the entire resistome also revealed a greater number of mobile resistance genes in this facility. Finally, both facilities displayed high fluoroquinolone resistance rates-a worrying trend seen globally despite measures in place aimed at limiting their use.
Collapse
Affiliation(s)
- Sylvia A. Sapula
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anteneh Amsalu
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Jon J. Whittall
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bradley J. Hart
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Naomi L. Siderius
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Lynn Nguyen
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - John Turnidge
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Krco S, Davis SJ, Joshi P, Wilson LA, Monteiro Pedroso M, Douw A, Schofield CJ, Hugenholtz P, Schenk G, Morris MT. Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance. Front Chem 2023; 11:1196073. [PMID: 37408556 PMCID: PMC10318434 DOI: 10.3389/fchem.2023.1196073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
β-Lactams are the most widely employed antibiotics in clinical settings due to their broad efficacy and low toxicity. However, since their first use in the 1940s, resistance to β-lactams has proliferated to the point where multi-drug resistant organisms are now one of the greatest threats to global human health. Many bacteria use β-lactamases to inactivate this class of antibiotics via hydrolysis. Although nucleophilic serine-β-lactamases have long been clinically important, most broad-spectrum β-lactamases employ one or two metal ions (likely Zn2+) in catalysis. To date, potent and clinically useful inhibitors of these metallo-β-lactamases (MBLs) have not been available, exacerbating their negative impact on healthcare. MBLs are categorised into three subgroups: B1, B2, and B3 MBLs, depending on their sequence similarities, active site structures, interactions with metal ions, and substrate preferences. The majority of MBLs associated with the spread of antibiotic resistance belong to the B1 subgroup. Most characterized B3 MBLs have been discovered in environmental bacteria, but they are increasingly identified in clinical samples. B3-type MBLs display greater diversity in their active sites than other MBLs. Furthermore, at least one of the known B3-type MBLs is inhibited by the serine-β-lactamase inhibitor clavulanic acid, an observation that may promote the design of derivatives active against a broader range of MBLs. In this Mini Review, recent advances in structure-function relationships of B3-type MBLs will be discussed, with a view to inspiring inhibitor development to combat the growing spread of β-lactam resistance.
Collapse
Affiliation(s)
- Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel J. Davis
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Pallav Joshi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Liam A. Wilson
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Marc T. Morris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|