1
|
Odendaal ML, Taenzer J, de Rooij MMT, Kuiling S, Bogaert D, Franz E, Smit LAM. Nasopharyngeal microbiota is influenced by agricultural air pollution in individuals with and without COPD. Sci Rep 2025; 15:15653. [PMID: 40325057 PMCID: PMC12053623 DOI: 10.1038/s41598-025-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Respiratory health in chronic obstructive pulmonary disease (COPD) is influenced by environmental factors such as air pollution, yet the role of the airway microbiota in this relationship remains unclear. We investigated the association between exposure to air pollution from livestock farms and the nasopharyngeal microbiota in individuals with COPD compared to healthy control subjects. The study included nasopharyngeal swabs from 186 currently non-smoking participants in the Netherlands, including 65 individuals with COPD and 121 without from a regional rural cohort. Additionally, 116 individuals from a population-wide cohort were included as national controls. Samples were taken at three time points over 12 weeks. The nasopharyngeal microbiota was studied using 16 S rRNA gene-based sequencing for all baseline samples and a random selection of 6-weeks and 12-weeks samples. Dispersion models were used to determine the average concentrations of livestock-related PM10, endotoxin, and ammonia at the participants' home addresses. Individuals with COPD had a higher absolute abundance of anaerobic bacteria, such as Peptoniphilus, Anaerococcus, Finegoldia magna, and Prevotella. Importantly, residential exposure to ammonia was identified as the most important driver of the microbial community composition, explaining 6.6% of the variation in nasopharyngeal microbiota in individuals with COPD. Higher ammonia concentrations were associated with decreased levels of key commensals and increased abundance of anaerobic bacteria. Furthermore, individuals living in areas with high livestock density exhibited greater microbial diversity compared to the broader national population. The study highlights the influence of residential exposure to livestock-related air pollution, particularly ammonia, on nasopharyngeal microbiota composition in individuals with COPD. Our findings suggest that environmental factors significantly impact microbial communities and underscore the potential role of anaerobic bacteria in COPD pathology. Future research should further investigate the mechanisms by which environmental air pollutants affect microbial communities and explore potential interventions to mitigate their effects on respiratory health.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.
| | - Julia Taenzer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Ghezzi H, Fan YM, Ng KM, Burckhardt JC, Pepin DM, Lin X, Ziels RM, Tropini C. PUPpy: a primer design pipeline for substrain-level microbial detection and absolute quantification. mSphere 2024; 9:e0036024. [PMID: 38980072 PMCID: PMC11288016 DOI: 10.1128/msphere.00360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Characterizing microbial communities at high resolution and with absolute quantification is crucial to unravel the complexity and diversity of microbial ecosystems. This can be achieved with PCR assays, which enable highly selective detection and absolute quantification of microbial DNA. However, a major challenge that has hindered PCR applications in microbiome research is the design of highly specific primer sets that exclusively amplify intended targets. Here, we introduce Phylogenetically Unique Primers in python (PUPpy), a fully automated pipeline to design microbe- and group-specific primers within a given microbial community. PUPpy can be executed from a user-friendly graphical user interface, or two simple terminal commands, and it only requires coding sequence files of the community members as input. PUPpy-designed primers enable the detection of individual microbes and quantification of absolute microbial abundance in defined communities below the strain level. We experimentally evaluated the performance of PUPpy-designed primers using two bacterial communities as benchmarks. Each community comprises 10 members, exhibiting a range of genetic similarities that spanned from different phyla to substrains. PUPpy-designed primers also enable the detection of groups of bacteria in an undefined community, such as the detection of a gut bacterial family in a complex stool microbiota sample. Taxon-specific primers designed with PUPpy showed 100% specificity to their intended targets, without unintended amplification, in each community tested. Lastly, we show the absolute quantification of microbial abundance using PUPpy-designed primers in droplet digital PCR, benchmarked against 16S rRNA and shotgun sequencing. Our data shows that PUPpy-designed microbe-specific primers can be used to quantify substrain-level absolute counts, providing more resolved and accurate quantification in defined communities than short-read 16S rRNA and shotgun sequencing. IMPORTANCE Profiling microbial communities at high resolution and with absolute quantification is essential to uncover hidden ecological interactions within microbial ecosystems. Nevertheless, achieving resolved and quantitative investigations has been elusive due to methodological limitations in distinguishing and quantifying highly related microbes. Here, we describe Phylogenetically Unique Primers in python (PUPpy), an automated computational pipeline to design taxon-specific primers within defined microbial communities. Taxon-specific primers can be used to selectively detect and quantify individual microbes and larger taxa within a microbial community. PUPpy achieves substrain-level specificity without the need for computationally intensive databases and prioritizes user-friendliness by enabling both terminal and graphical user interface applications. Altogether, PUPpy enables fast, inexpensive, and highly accurate perspectives into microbial ecosystems, supporting the characterization of bacterial communities in both in vitro and complex microbiota settings.
Collapse
Affiliation(s)
- Hans Ghezzi
- Department of Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yiyun M. Fan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katharine M. Ng
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juan C. Burckhardt
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deanna M. Pepin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xuan Lin
- Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan M. Ziels
- Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zhang H, Li M, Wang S. Isolation and identification of hoylesella marshii causing pleural infection: a case report. BMC Infect Dis 2024; 24:677. [PMID: 38977947 PMCID: PMC11229267 DOI: 10.1186/s12879-024-09586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Hoylesella marshii can be isolated from human oral cavities affected by dental pulp and periodontal infections, as well as from the dental plaque of healthy individuals, making it a common bacterium within the oral microbiota. However, its role in causing pleural infections in humans is rare. CASE PRESENTATION A case of purulent pleural effusion occurred shortly after discharge in an elderly patient who had undergone surgery for gastric cancer. The infection was identified as being caused by an obligate anaerobe through laboratory culture, and was further identified as Hoylesella marshii causing pleural infection through 16 S rRNA gene sequence analysis. Susceptibility testing guided precise treatment with cefoperazone-sulbactam and metronidazole. The patient's clinical symptoms improved rapidly, laboratory test indicators gradually returned to normal, and the patient ultimately recovered. CONCLUSION Hoylesella marshii can cause pleural infections in humans. Clinical microbiology laboratories should pay special attention to the cultivation of obligate anaerobes when routine aerobic cultures do not show bacterial growth but bacteria are visible on smear staining, and when conventional identification methods fail to identify the bacterium, analysis based on the highly conserved 16 S rRNA gene sequence can accurately and specifically identify the bacterium, guiding clinicians in formulating precise anti-infection strategies.
Collapse
Affiliation(s)
- Hairong Zhang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Clinical Laboratory Medicine, Yancheng Tinghu District People's Hospital, Yancheng, 224001, China
| | - Man Li
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Sen Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Grassi L, Asfahl KL, Van den Bossche S, Maenhout I, Sass A, Vande Weygaerde Y, Van Braeckel E, Verhasselt B, Boelens J, Tunney MM, Dandekar AA, Coenye T, Crabbé A. Antibiofilm activity of Prevotella species from the cystic fibrosis lung microbiota against Pseudomonas aeruginosa. Biofilm 2024; 7:100206. [PMID: 38975276 PMCID: PMC11225020 DOI: 10.1016/j.bioflm.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
It is increasingly recognized that interspecies interactions may modulate the pathogenicity of Pseudomonas aeruginosa during chronic lung infections. Nevertheless, while the interaction between P. aeruginosa and pathogenic microorganisms co-infecting the lungs has been widely investigated, little is known about the influence of other members of the lung microbiota on the infection process. In this study, we focused on investigating the impact of Prevotella species isolated from the sputum of people with cystic fibrosis (pwCF) on biofilm formation and virulence factor production by P. aeruginosa. Screening of a representative collection of Prevotella species recovered from clinical samples showed that several members of this genus (8 out 10 isolates) were able to significantly reduce biofilm formation of P. aeruginosa PAO1, without impact on growth. Among the tested isolates, the strongest biofilm-inhibitory activity was observed for Prevotella intermedia and Prevotella nigrescens, which caused a reduction of up to 90% in the total biofilm biomass of several P. aeruginosa isolates from pwCF. In addition, a strain-specific effect of P. nigrescens on the ability of P. aeruginosa to produce proteases and pyocyanin was observed, with significant alterations in the levels of these virulence factors detected in LasR mutant strains. Overall, these results suggest that non-pathogenic bacteria from the lung microbiota may regulate pathogenicity traits of P. aeruginosa, and possibly affect the outcome of chronic lung infections.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Kyle L. Asfahl
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ine Maenhout
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Chai Y, Liu X, Bai G, Zhou N, Liu D, Zhang X, Li M, Li K, Lei H. Gut microbiome, T cell subsets, and cytokine analysis identify differential biomarkers in tuberculosis. Front Immunol 2024; 15:1323723. [PMID: 38650928 PMCID: PMC11033455 DOI: 10.3389/fimmu.2024.1323723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction The gut microbiota, T cell subsets, and cytokines participate in tuberculosis (TB) pathogenesis. To date, the mechanisms by which these factors interactively promote TB development at different time points remain largely unclear. In the context of this study, We looked into the microorganisms in the digestive tract, T cell types, and cytokines related to tuberculosis. Methods According to QIIME2, we analyzed 16SrDNA sequencing of the gut microbiome on the Illumina MiSeq. Enzyme-linked immunosorbent assay was used to measure the concentrations of cytokines. Results We showed the presence of 26 identifiable differential microbiomes in the gut and 44 metabolic pathways between healthy controls and the different time points in the development of TB in patients. Five bacterial genera (Bacteroides, Bifidobacterium, Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4/CD8, whereas three bacterial taxa (Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4. Three bacterial taxa (Faecalibacterium, Ruminococcus, and Dorea) were most closely associated with IL-4. Ruminococcus was most closely associated with IL-2 and IL-10. Conclusion Diverse microorganisms, subsets of T cells, and cytokines, exhibiting varying relative abundances and structural compositions, were observed in both healthy controls and patients throughout distinct phases of tuberculosis. Gaining insight into the function of the gut microbiome, T cell subsets, and cytokines may help modulate therapeutic strategies for TB.
Collapse
Affiliation(s)
- Yinghui Chai
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xin Liu
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Guangliang Bai
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nannan Zhou
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Danfeng Liu
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaomeng Zhang
- First Clinical Medical College, Hebei North University, Zhangjiakou, China
| | - Min Li
- First Clinical Medical College, Hebei North University, Zhangjiakou, China
| | - Kang Li
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hong Lei
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
6
|
Madden DE, McCarthy KL, Bell SC, Olagoke O, Baird T, Neill J, Ramsay KA, Kidd TJ, Stewart AG, Subedi S, Choong K, Fraser TA, Sarovich DS, Price EP. Rapid fluoroquinolone resistance detection in Pseudomonas aeruginosa using mismatch amplification mutation assay-based real-time PCR. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Antimicrobial resistance (AMR) is an ever-increasing global health concern. One crucial facet in tackling the AMR epidemic is earlier and more accurate AMR diagnosis, particularly in the dangerous and highly multi-drug-resistant ESKAPE pathogen,
Pseudomonas aeruginosa
.
Objectives. We aimed to develop two SYBR Green-based mismatch amplification mutation assays (SYBR-MAMAs) targeting GyrA T83I (gyrA248) and GyrA D87N, D87Y and D87H (gyrA259). Together, these variants cause the majority of fluoroquinolone (FQ) AMR in
P. aeruginosa
.
Methods. Following assay validation, the gyrA248 and gyrA259 SYBR-MAMAs were tested on 84 Australian clinical
P. aeruginosa
isolates, 46 of which demonstrated intermediate/full ciprofloxacin resistance according to antimicrobial susceptibility testing.
Results. Our two SYBR-MAMAs correctly predicted an AMR phenotype in the majority (83%) of isolates with intermediate/full FQ resistance. All FQ-sensitive strains were predicted to have a sensitive phenotype. Whole-genome sequencing confirmed 100 % concordance with SYBR-MAMA genotypes.
Conclusions. Our GyrA SYBR-MAMAs provide a rapid and cost-effective method for same-day identification of FQ AMR in
P. aeruginosa
. An additional SYBR-MAMA targeting the GyrB S466Y/S466F variants would increase FQ AMR prediction to 91 %. Clinical implementation of our assays will permit more timely treatment alterations in cases where decreased FQ susceptibility is identified, leading to improved patient outcomes and antimicrobial stewardship.
Collapse
Affiliation(s)
- Danielle E. Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Kate L. McCarthy
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Scott C. Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Olusola Olagoke
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Timothy Baird
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Jane Neill
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Kay A. Ramsay
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Timothy J. Kidd
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Adam G. Stewart
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Shradha Subedi
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Keat Choong
- Infectious Diseases Unit, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
| | - Tamieka A. Fraser
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Derek S. Sarovich
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Erin P. Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Infection Research Network Sunshine Coast, Birtinya, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
7
|
Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb Pathog 2022; 169:105673. [PMID: 35843443 DOI: 10.1016/j.micpath.2022.105673] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Prevotella species, a gram-negative obligate anaerobe, is commonly associated with human infections such as dental caries and periodontitis, as well as other conditions such as chronic osteomyelitis, bite-related infections, rheumatoid arthritis and intestinal diseases like ulcerative colitis. This generally harmless commensal possesses virulence factors such as adhesins, hemolysins, secretion systems exopolysaccharide, LPS, proteases, quorum sensing molecules and antibiotic resistance to evolve into a well-adapted pathogen capable of causing successful infection and proliferation in the host tissue. This review describes several of these virulence factors and their advantage to Prevotella spp. in causing inflammatory diseases like periodontitis. In addition, using genome analysis of Prevotella reference strains, we examined other putative virulence determinants which can provide insights as biomarkers and be the targets for effective interventions in Prevotella related diseases like periodontitis.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
8
|
Castillo Y, Delgadillo NA, Neuta Y, Hernández A, Acevedo T, Cárdenas E, Montaño A, Lafaurie GI, Castillo DM. Antibiotic Susceptibility and Resistance Genes in Oral Clinical Isolates of Prevotella intermedia, Prevotella nigrescens, and Prevotella melaninogenica. Antibiotics (Basel) 2022; 11:antibiotics11070888. [PMID: 35884141 PMCID: PMC9312306 DOI: 10.3390/antibiotics11070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
The Prevotella genus is a normal constituent of the oral microbiota, and is commonly isolated from mechanically treated polymicrobial infections. However, antibiotic treatment is necessary for some patients. This study compared the antibiotic susceptibility and the presence of resistance genes in clinical oral isolates of P. intermedia, P. nigrescens, and P. melaninogenica. Antibiotic susceptibility was assessed using the agar dilution method. PCR confirmed the species and resistance gene frequency in the Prevotella species. The frequencies of species P. intermedia, P. nigrescens, and P. melaninogenica were 30.2%, 45.7%, and 24.1%, respectively. No isolates of P. intermedia were resistant to amoxicillin/clavulanic acid, tetracycline, or clindamycin. P. nigrescens and P. melaninogenica were resistant to amoxicillin/clavulanic acid and tetracycline at frequencies of 40% and 20%, respectively. P. intermedia was resistant to metronidazole at a frequency of 30%, P. nigrescens at 20%, and P. melaninogenica at 40%. P. nigrescens and P. melaninogenica were resistant to 50% and 10% clindamycin, respectively. The gene most frequently detected was tetQ, at 43.3%, followed by tetM at 36.6%, blaTEM at 26.6%, ermF at 20%, cfxA, cfxA2, and nimAB at 16.6%, and nimAEFI at 3.3%. P. nigrescens was the species with the highest resistance to antibiotics such as amoxicillin/clavulanic acid, amoxicillin, and clindamycin, in addition to being the species with the largest number of genes compared to P. intermedia and P. melaninogenica.
Collapse
Affiliation(s)
- Yormaris Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Nathaly Andrea Delgadillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Yineth Neuta
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Andrés Hernández
- Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Tania Acevedo
- Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Edwin Cárdenas
- Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Andrea Montaño
- Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Diana Marcela Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| |
Collapse
|
9
|
Madden DE, Olagoke O, Baird T, Neill J, Ramsay KA, Fraser TA, Bell SC, Sarovich DS, Price EP. Express Yourself: Quantitative Real-Time PCR Assays for Rapid Chromosomal Antimicrobial Resistance Detection in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2022; 66:e0020422. [PMID: 35467369 PMCID: PMC9112894 DOI: 10.1128/aac.00204-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/31/2022] [Indexed: 01/03/2023] Open
Abstract
The rise of antimicrobial-resistant (AMR) bacteria is a global health emergency. One critical facet of tackling this epidemic is more rapid AMR diagnosis in serious multidrug-resistant pathogens like Pseudomonas aeruginosa. Here, we designed and then validated two multiplex quantitative real-time PCR (qPCR) assays to simultaneously detect differential expression of the resistance-nodulation-division efflux pumps MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM, the AmpC β-lactamase, and the porin OprD, which are commonly associated with chromosomally encoded AMR. Next, qPCRs were tested on 15 sputa from 11 participants with P. aeruginosa respiratory infections to determine AMR profiles in vivo. We confirmed multiplex qPCR testing feasibility directly on sputa, representing a key advancement in in vivo AMR diagnosis. Notably, comparison of sputa with their derived isolates grown in Luria-Bertani broth (±2.5% NaCl) or a 5-antibiotic cocktail showed marked expression differences, illustrating the difficulty in replicating in vivo expression profiles in vitro. Cystic fibrosis sputa showed significantly reduced mexE and mexY expression compared with chronic obstructive pulmonary disease sputa, despite harboring fluoroquinolone- and aminoglycoside-resistant strains, indicating that these loci do not contribute to AMR in vivo. oprD was also significantly downregulated in cystic fibrosis sputa, even in the absence of contemporaneous carbapenem use, suggesting a common adaptive trait in chronic infections that may affect carbapenem efficacy. Sputum ampC expression was highest in participants receiving carbapenems (6.7 to 15×), some of whom were simultaneously receiving cephalosporins, the latter of which would be rendered ineffective by the upregulated ampC. Our qPCR assays provide valuable insights into the P. aeruginosa resistome, and their use on clinical specimens will permit timely treatment alterations that will improve patient outcomes and antimicrobial stewardship measures.
Collapse
Affiliation(s)
- Danielle E. Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Olusola Olagoke
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy Baird
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Jane Neill
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Kay A. Ramsay
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Tamieka A. Fraser
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Scott C. Bell
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Derek S. Sarovich
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Erin P. Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|