1
|
Qin C, Lypaczewski P, Sayeed A, Cuénod AC, Brinkley L, Creasy-Marrazzo A, Cato ET, Islam K, Khabir IU, Bhuiyan TR, Begum Y, Qadri F, Khan AI, Nelson EJ, Shapiro BJ. Vibrio cholerae lineage and pangenome diversity varies geographically across Bangladesh over one year. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623281. [PMID: 39605465 PMCID: PMC11601304 DOI: 10.1101/2024.11.12.623281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cholera is a diarrhoeal disease caused by Vibrio cholerae. It remains a major public health challenge in the endemic region around the Bay of Bengal. Over decadal time scales, one lineage typically dominates the others and spreads in global pandemic waves. However, it remains unclear to what extent diverse lineages co-circulate during a single outbreak season. Defining the pool of diversity during finer time scales is important because the selective pressures that impact V. cholerae - namely antibiotics and phages - are dynamic on these time scales. To study the nationwide diversity of V. cholerae, we long-read sequenced 273 V. cholerae genomes from seven hospitals over one year (2018) in Bangladesh. Four major V. cholerae lineages were identified: known lineages BD-1, BD-2a, and BD-2b, and a novel lineage that we call BD-3. In 2022, BD-1 caused a large cholera outbreak in Dhaka, apparently outcompeting BD-2 lineages. We show that, in 2018, BD-1 was already dominant in the five northern regions, including Dhaka, consistent with an origin from India in the north. By contrast, we observed a higher diversity of lineages in the two southern regions near the coast. The four lineages differed in pangenome content, including integrative and conjugative elements (ICEs) and genes involved in resistance to bacteriophages and antibiotics. Notably, BD-2a lacked an ICE and is predicted to be more sensitive to phages and antibiotics, but nevertheless persisted throughout the year-long sampling period. Genes associated with antibiotic resistance in V. cholerae from Bangladesh in 2006 were entirely absent from all lineages in 2018-19, suggesting shifting costs and benefits of encoding these genes. Together, our results highlight the dynamic nature of the V. cholerae pangenome and the geographic structure of its lineage diversity.
Collapse
Affiliation(s)
- Chuhan Qin
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Patrick Lypaczewski
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Aline C Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Kamrul Islam
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin Begum
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Canada
| |
Collapse
|
2
|
Lorentzen ØM, Bleis C, Abel S. A comparative genomic and phenotypic study of Vibrio cholerae model strains using hybrid sequencing. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001502. [PMID: 39311857 PMCID: PMC11420891 DOI: 10.1099/mic.0.001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Next-generation sequencing methods have become essential for studying bacterial biology and pathogenesis, often depending on high-quality, closed genomes. In this study, we utilized a hybrid sequencing approach to assemble the genome of C6706, a widely used Vibrio cholerae model strain. We present a manually curated annotation of the genome, enhancing user accessibility by linking each coding sequence to its counterpart in N16961, the first sequenced V. cholerae isolate and a commonly used reference genome. Comparative genomic analysis between V. cholerae C6706 and N16961 uncovered multiple genetic differences in genes associated with key biological functions. To determine whether these genetic variations result in phenotypic differences, we compared several phenotypes relevant to V. cholerae pathogenicity like genetic stability, acid sensitivity, biofilm formation and motility. Notably, V. cholerae N16961 exhibited greater motility and reduced biofilm formation compared to V. cholerae C6706. These phenotypic differences appear to be mediated by variations in quorum sensing and cyclic di-GMP signalling pathways between the strains. This study provides valuable insights into the regulation of biofilm formation and motility in V. cholerae.
Collapse
Affiliation(s)
| | - Christina Bleis
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sören Abel
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
3
|
Madi N, Cato ET, Abu Sayeed M, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIU, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024; 384:eadj3166. [PMID: 38669570 DOI: 10.1126/science.adj3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Imam Ul Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Madi N, Cato ET, Sayeed MA, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIUL, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity and pathogen genetic diversity in cholera patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544933. [PMID: 37398242 PMCID: PMC10312676 DOI: 10.1101/2023.06.14.544933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of phage-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. Here we report a year-long, nation-wide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative PCR, while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of anti-phage defenses, predation was 'effective,' with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of anti-phage defenses, predation was 'ineffective,' with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T. Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md. Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Imam UL. Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Taufiqur R. Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A. Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S. Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B. Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J. Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|