1
|
Mohite OS, Jørgensen TS, Booth TJ, Charusanti P, Phaneuf PV, Weber T, Palsson BO. Pangenome mining of the Streptomyces genus redefines species' biosynthetic potential. Genome Biol 2025; 26:9. [PMID: 39810189 PMCID: PMC11734326 DOI: 10.1186/s13059-024-03471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Streptomyces is a highly diverse genus known for the production of secondary or specialized metabolites with a wide range of applications in the medical and agricultural industries. Several thousand complete or nearly complete Streptomyces genome sequences are now available, affording the opportunity to deeply investigate the biosynthetic potential within these organisms and to advance natural product discovery initiatives. RESULTS We perform pangenome analysis on 2371 Streptomyces genomes, including approximately 1200 complete assemblies. Employing a data-driven approach based on genome similarities, the Streptomyces genus was classified into 7 primary and 42 secondary Mash-clusters, forming the basis for comprehensive pangenome mining. A refined workflow for grouping biosynthetic gene clusters (BGCs) redefines their diversity across different Mash-clusters. This workflow also reassigns 2729 known BGC families to only 440 families, a reduction caused by inaccuracies in BGC boundary detections. When the genomic location of BGCs is included in the analysis, a conserved genomic structure, or synteny, among BGCs becomes apparent within species and Mash-clusters. This synteny suggests that vertical inheritance is a major factor in the diversification of BGCs. CONCLUSIONS Our analysis of a genomic dataset at a scale of thousands of genomes refines predictions of BGC diversity using Mash-clusters as a basis for pangenome analysis. The observed conservation in the order of BGCs' genomic locations shows that the BGCs are vertically inherited. The presented workflow and the in-depth analysis pave the way for large-scale pangenome investigations and enhance our understanding of the biosynthetic potential of the Streptomyces genus.
Collapse
Affiliation(s)
- Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Thomas J Booth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Patrick V Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Bernhard O Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Rodrigues RDS, Souza AQLD, Barbosa AN, Santiago SRSDS, Vasconcelos ADS, Barbosa RD, Alves TCL, da Cruz JC, da Silva GF, Bentes JLDS, Souza ADLD. Biodiversity and Antifungal Activities of Amazonian Actinomycetes Isolated from Rhizospheres of Inga edulis Plants. Front Biosci (Elite Ed) 2024; 16:39. [PMID: 39736009 DOI: 10.31083/j.fbe1604039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/28/2024] [Accepted: 08/09/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of Inga edulis, a native South American plant and one that is economically useful in the whole of the Amazon. METHODS Among the 64 actinobacteria strains isolated from the rhizosphere of three Inga edulis plants, 20 strains were selected and submitted to dual-culture assays against five important phytopathogenic fungi and morphological and 16S rRNA gene analyses. Two strains, LaBMicrA B270 and B280, were also studied for production curves of metabolic extracts and antifungal activities, including their minimum inhibitory concentration (MIC) against phytopathogenic fungi. RESULTS Among the 20 strains, 90% were identified as Streptomyces and 10% as Kitasatospora. All the strains showed antagonisms against two or more of five phytopathogens: Corynespora cassiicola, Colletotrichum guaranicola, Colletotrichum sp., Pestalotiopsis sp., and Sclerotium coffeicola. Streptomyces spp. strains LaBMicrA B270 and B280 were active against phytopathogens of the guarana plant (Paullinia cupana). Furthermore, AcOEt/2-propanol 9:1 extract from the 10-day strain LaBMicrA B280 cultured medium presented activity against all the phytopathogens tested, with a minimum inhibitory concentration of 125 μg/mL. CONCLUSIONS The results revealed various actinomycetes in three rhizospheres of I. edulis in the Amazon and the high potential of metabolic extracts from some of these bacterial strains against phytopathogenic fungi that destroy numerous crops.
Collapse
Affiliation(s)
| | - Antonia Queiroz Lima de Souza
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
| | | | | | - Aldenora Dos Santos Vasconcelos
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
- Centro Multiusuário de Análise de Fenômenos Biomédicos, Universidade Estadual do Amazonas (CMABio-UEA), Manaus, AM 69065-001, Brasil
| | - Roneres Deniz Barbosa
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
| | | | | | | | | | - Afonso Duarte Leão de Souza
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
- Departamento de Química, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil
| |
Collapse
|
3
|
Widén T, Rangel AT, Lombard V, Drula E, Mazurkewich S, Terrapon N, Kerkhoven EJ, Larsbrink J. Streptomyces castrisilvae sp. nov. and Streptomyces glycanivorans sp. nov., novel soil streptomycetes metabolizing mutan and alternan. Int J Syst Evol Microbiol 2024; 74:006514. [PMID: 39264701 PMCID: PMC11475409 DOI: 10.1099/ijsem.0.006514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Six bacterial strains, Mut1T, Mut2, Alt1, Alt2, Alt3T, and Alt4, were isolated from soil samples collected in parks in Gothenburg, Sweden, based on their ability to utilize the insoluble polysaccharides α-1,3-glucan (mutan; Mut strains) or the mixed-linkage α-1,3/α-1,6-glucan (alternan; Alt strains). Analysis of 16S rRNA gene sequences identified all strains as members of the genus Streptomyces. The genomes of the strains were sequenced and subsequent phylogenetic analyses identified Mut2 as a strain of Streptomyces laculatispora and Alt1, Alt2 and Alt4 as strains of Streptomyces poriferorum, while Mut1T and Alt3T were most closely related to the type strains Streptomyces drozdowiczii NBRC 101007T and Streptomyces atroolivaceus NRRL ISP-5137T, respectively. Comprehensive genomic and biochemical characterizations were conducted, highlighting typical features of Streptomyces, such as large genomes (8.0-9.6 Mb) with high G+C content (70.5-72.0%). All six strains also encode a wide repertoire of putative carbohydrate-active enzymes, indicating a capability to utilize various complex polysaccharides as carbon sources such as starch, mutan, and cellulose, which was confirmed experimentally. Based on phylogenetic and phenotypic characterization, our study suggests that strains Mut1T and Alt3T represent novel species in the genus Streptomyces for which the names Streptomyces castrisilvae sp. nov. and Streptomyces glycanivorans sp. nov. are proposed, with strains Mut1T (=DSM 117248T=CCUG 77596T) and Alt3T (=DSM 117252T=CCUG 77600T) representing the respective type strains.
Collapse
Affiliation(s)
- Tove Widén
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Albert Tafur Rangel
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, USC 1408 INRAE, UMR 7257 AMU, CNRS, FR-13288 Marseille, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, USC 1408 INRAE, UMR 7257 AMU, CNRS, FR-13288 Marseille, France
- INRAE, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille, France
| | - Scott Mazurkewich
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, USC 1408 INRAE, UMR 7257 AMU, CNRS, FR-13288 Marseille, France
| | - Eduard J. Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Johan Larsbrink
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
4
|
Mispelaere M, De Rop AS, Hermans C, De Maeseneire SL, Soetaert WK, De Mol ML, Hulpiau P. Whole genome-based comparative analysis of the genus Streptomyces reveals many misclassifications. Appl Microbiol Biotechnol 2024; 108:453. [PMID: 39212721 PMCID: PMC11364561 DOI: 10.1007/s00253-024-13290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Streptomyces species are experts in the production of bioactive secondary metabolites; however, their taxonomy has fallen victim of the tremendous interest shown by the scientific community, evident in the discovery of numerous synonymous in public repositories. Based on genomic data from NCBI Datasets and nomenclature from the LPSN database, we compiled a dataset of 600 Streptomyces species along with their annotations and metadata. To pinpoint the most suitable taxonomic classification method, we conducted a comprehensive assessment comparing multiple methodologies, including analysis of 16S rRNA, individual housekeeping genes, multilocus sequence analysis (MLSA), and Fast Average Nucleotide Identity (FastANI) on a subset of 409 species with complete data. Due to insufficient resolution of 16S rRNA and inconsistency observed in individual housekeeping genes, we performed a more in-depth analysis, comparing only FastANI and MLSA, which expanded our dataset to include 502 species. With FastANI validated as the preferred method, we conducted pairwise analysis on the entire dataset identifying 59 non-unique species among the 600, and subsequently refined the dataset to 541 unique species. Additionally, we collected data on 724 uncharacterized Streptomyces strains to investigate the uniqueness potential of the unannotated fraction of the Streptomyces genus. Utilizing FastANI, 289 strains could be successfully classified into one of the 541 Streptomyces species. KEY POINTS: • Evaluation of taxonomic classification methods for Streptomyces species. • Whole genome analysis, specifically FastANI, has been chosen as preferred method. • Various reclassifications are proposed within the Streptomyces genus.
Collapse
Affiliation(s)
- Marieke Mispelaere
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Rijselstraat 5, 8200, Brugge, Belgium
| | - Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.Be), Department of Biotechnology, Faculty of Bio-Science Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Rijselstraat 5, 8200, Brugge, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.Be), Department of Biotechnology, Faculty of Bio-Science Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim K Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.Be), Department of Biotechnology, Faculty of Bio-Science Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Maarten L De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.Be), Department of Biotechnology, Faculty of Bio-Science Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Rijselstraat 5, 8200, Brugge, Belgium.
| |
Collapse
|
5
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
6
|
Montoya-Giraldo M, Piper KR, Ikhimiukor OO, Park CJ, Caimi NA, Buecher DC, Valdez EW, Northup DE, Andam CP. Ecology shapes the genomic and biosynthetic diversification of Streptomyces bacteria from insectivorous bats. Microb Genom 2024; 10. [PMID: 38625724 DOI: 10.1099/mgen.0.001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Streptomyces are prolific producers of secondary metabolites from which many clinically useful compounds have been derived. They inhabit diverse habitats but have rarely been reported in vertebrates. Here, we aim to determine to what extent the ecological source (bat host species and cave sites) influence the genomic and biosynthetic diversity of Streptomyces bacteria. We analysed draft genomes of 132 Streptomyces isolates sampled from 11 species of insectivorous bats from six cave sites in Arizona and New Mexico, USA. We delineated 55 species based on the genome-wide average nucleotide identity and core genome phylogenetic tree. Streptomyces isolates that colonize the same bat species or inhabit the same site exhibit greater overall genomic similarity than they do with Streptomyces from other bat species or sites. However, when considering biosynthetic gene clusters (BGCs) alone, BGC distribution is not structured by the ecological or geographical source of the Streptomyces that carry them. Each genome carried between 19-65 BGCs (median=42.5) and varied even among members of the same Streptomyces species. Nine major classes of BGCs were detected in ten of the 11 bat species and in all sites: terpene, non-ribosomal peptide synthetase, polyketide synthase, siderophore, RiPP-like, butyrolactone, lanthipeptide, ectoine, melanin. Finally, Streptomyces genomes carry multiple hybrid BGCs consisting of signature domains from two to seven distinct BGC classes. Taken together, our results bring critical insights to understanding Streptomyces-bat ecology and BGC diversity that may contribute to bat health and in augmenting current efforts in natural product discovery, especially from underexplored or overlooked environments.
Collapse
Affiliation(s)
- Manuela Montoya-Giraldo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kathryn R Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Cooper J Park
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Nicole A Caimi
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Ernest W Valdez
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
7
|
J Ashwini John, Selvarajan E. Genomic analysis of lignocellulolytic enzyme producing novel Streptomyces sp.MS2A for the bioethanol applications. Int J Biol Macromol 2023; 250:126138. [PMID: 37558017 DOI: 10.1016/j.ijbiomac.2023.126138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
The conversion of lignocellulosic waste to energy offers a cost-effective biofuel. The current study discusses the utilization of cellulose in rice husks by lichen-associated Streptomyces sp. MS2A via carbohydrate metabolism. Out of 39 actinobacteria, one actinobacterial strain MS2A, showed CMCase, FPase, and cellobiohydrolase activity. The whole genome analysis of Streptomyces sp. MS2A showed maximum similarity with Streptomyces sp. CCM_MD2014. The genome analysis confirmed the presence of cellulose-degrading genes along with xylan-degrading genes that code for GH3, GH6, GH9, GH11, GH43, GH51, and 15 other GH families with glycosyl transferase, carbohydrate-binding modules, and energy metabolism groups. Protein family analysis corroborates the enzyme family. Among the 19,402 genes of Streptomyces sp. MS2A, approximately 70 GH family codes for lignocellulose degradation enzymes. The structure of cellulase was modeled and validated. Scanning electron microscopy and gas chromatography-mass spectrometry (GCMS) was performed to analyze the lignocellulosic degradation of rice husk and the end product bioethanol.
Collapse
Affiliation(s)
- J Ashwini John
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India..
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India..
| |
Collapse
|
8
|
Nikolaidis M, Hesketh A, Frangou N, Mossialos D, Van de Peer Y, Oliver SG, Amoutzias GD. A panoramic view of the genomic landscape of the genus Streptomyces. Microb Genom 2023; 9:mgen001028. [PMID: 37266990 PMCID: PMC10327506 DOI: 10.1099/mgen.0.001028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
We delineate the evolutionary plasticity of the ecologically and biotechnologically important genus Streptomyces, by analysing the genomes of 213 species. Streptomycetes genomes demonstrate high levels of internal homology, whereas the genome of their last common ancestor was already complex. Importantly, we identify the species-specific fingerprint proteins that characterize each species. Even among closely related species, we observed high interspecies variability of chromosomal protein-coding genes, species-level core genes, accessory genes and fingerprints. Notably, secondary metabolite biosynthetic gene clusters (smBGCs), carbohydrate-active enzymes (CAZymes) and protein-coding genes bearing the rare TTA codon demonstrate high intraspecies and interspecies variability, which emphasizes the need for strain-specific genomic mining. Highly conserved genes, such as those specifying genus-level core proteins, tend to occur in the central region of the chromosome, whereas those encoding proteins with evolutionarily volatile species-level fingerprints, smBGCs, CAZymes and TTA-codon-bearing genes are often found towards the ends of the linear chromosome. Thus, the chromosomal arms emerge as the part of the genome that is mainly responsible for rapid adaptation at the species and strain level. Finally, we observed a moderate, but statistically significant, correlation between the total number of CAZymes and three categories of smBGCs (siderophores, e-Polylysin and type III lanthipeptides) that are related to competition among bacteria.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Nikoletta Frangou
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9054 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9054 Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|