1
|
Peduzzi C, Sagia A, Burokienė D, Nagy IK, Fischer-Le Saux M, Portier P, Dereeper A, Cunnac S, Roman-Reyna V, Jacobs JM, Bragard C, Koebnik R. Complete Genome Sequencing of Three Clade-1 Xanthomonads Reveals Genetic Determinants for a Lateral Flagellin and the Biosynthesis of Coronatine-Like Molecules in Xanthomonas. PHYTOPATHOLOGY 2023; 113:1185-1191. [PMID: 36611232 DOI: 10.1094/phyto-10-22-0373-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Evolutionarily, early-branching xanthomonads, also referred to as clade-1 xanthomonads, include major plant pathogens, most of which colonize monocotyledonous plants. Seven species have been validly described, among them the two sugarcane pathogens Xanthomonas albilineans and Xanthomonas sacchari, as well as Xanthomonas translucens, which infects small-grain cereals and diverse grasses but also asparagus and pistachio trees. Single-gene sequencing and genomic approaches have indicated that this clade likely contains more, yet-undescribed species. In this study, we sequenced representative strains of three novel species using long-read sequencing technology. Xanthomonas campestris pv. phormiicola strain CFBP 8444 causes bacterial streak on New Zealand flax, another monocotyledonous plant. Xanthomonas sp. strain CFBP 8443 has been isolated from common bean, and Xanthomonas sp. strain CFBP 8445 originated from banana. Complete assemblies of the chromosomes confirmed their unique phylogenetic position within clade 1 of Xanthomonas. Genome mining revealed novel genetic features, hitherto undescribed in other members of the Xanthomonas genus. In strain CFBP 8444, we identified genes related to the synthesis of coronatine-like compounds, a phytotoxin produced by several pseudomonads, which raises interesting questions about the evolution and pathogenicity of this pathogen. Furthermore, strain CFBP 8444 was found to contain a second, atypical flagellar gene cluster in addition to the canonical flagellar gene cluster. Overall, this research represents an important step toward better understanding the evolutionary history and biology of early-branching xanthomonads.
Collapse
Affiliation(s)
- Chloé Peduzzi
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Angeliki Sagia
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Daiva Burokienė
- Nature Research Centre, Institute of Botany, Laboratory of Plant Pathology, Vilnius, Lithuania
| | | | | | - Perrine Portier
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Alexis Dereeper
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sébastien Cunnac
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Claude Bragard
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
2
|
Substrate size-dependent conformational changes of bacterial pectin-binding protein crucial for chemotaxis and assimilation. Sci Rep 2022; 12:12653. [PMID: 35879323 PMCID: PMC9314435 DOI: 10.1038/s41598-022-16540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Gram-negative Sphingomonas sp. strain A1 exhibits positive chemotaxis toward acidic polysaccharide pectin. SPH1118 has been identified as a pectin-binding protein involved in both pectin chemotaxis and assimilation. Here we show tertiary structures of SPH1118 with six different conformations as determined by X-ray crystallography. SPH1118 consisted of two domains with a large cleft between the domains and substrates bound to positively charged and aromatic residues in the cleft through hydrogen bond and stacking interactions. Substrate-free SPH1118 adopted three different conformations in the open form. On the other hand, the two domains were closed in substrate-bound form and the domain closure ratio was changed in response to the substrate size, suggesting that the conformational change upon binding to the substrate triggered the expression of pectin chemotaxis and assimilation. This study first clarified that the solute-binding protein with dual functions recognized the substrate through flexible conformational changes in response to the substrate size.
Collapse
|
3
|
Li H, Chen M, Zhang Z, Li B, Liu J, Xue H, Ji S, Guo Z, Wang J, Zhu H. Hybrid Histidine Kinase WelA of Sphingomonas sp. WG Contributes to WL Gum Biosynthesis and Motility. Front Microbiol 2022; 13:792315. [PMID: 35300474 PMCID: PMC8921679 DOI: 10.3389/fmicb.2022.792315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Sphingomonas sp. WG produced WL gum with commercial utility potential in many industries. A hybrid sensor histidine kinase/response regulator WelA was identified to regulate the WL gum biosynthesis, and its function was evaluated by gene deletion strategy. The WL gum production and broth viscosity of mutant ΔwelA was only 44% and 0.6% of wild type strain at 72 h. The transcriptomic analysis of differentially expressed genes showed that WelA was mapped to CckA; ChpT, and CtrA in the CckA-ChpT-CtrA pathway was up-regulated. One phosphodiesterase was up-regulated by CtrA, and the intracellular c-di-GMP was decreased. Most genes involved in WL gum biosynthesis pathway was not significantly changed in ΔwelA except the up-regulated atrB and atrD and the down-regulated pmm. Furthermore, the up-regulated regulators ctrA, flaEY, flbD, and flaF may participate in the regulation of flagellar biogenesis and influenced motility. These results suggested that CckA-ChpT-CtrA pathway and c-di-GMP were involved in WL gum biosynthesis regulation. This work provides useful information on the understanding of molecular mechanisms underlying WL gum biosynthesis regulation.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Mengqi Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Benchao Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Han Xue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Sixue Ji
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Zhongrui Guo
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.,Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
MURATA K, KAWAI S, HASHIMOTO W. Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:529-552. [PMID: 36504195 PMCID: PMC9751261 DOI: 10.2183/pjab.98.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.
Collapse
Affiliation(s)
| | - Shigeyuki KAWAI
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Wataru HASHIMOTO
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
5
|
Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci Rep 2020; 10:3977. [PMID: 32132546 PMCID: PMC7055323 DOI: 10.1038/s41598-020-60274-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
As opposed to typical bacteria exhibiting chemotaxis towards low-molecular-weight substances, such as amino acids and mono/oligosaccharides, gram-negative Sphingomonas sp. strain A1 shows chemotaxis towards alginate and pectin polysaccharides. To identify the mechanism of chemotaxis towards macromolecules, a genomic fragment was isolated from the wild-type strain A1 through complementation with the mutant strain A1-M5 lacking chemotaxis towards pectin. This fragment contained several genes including sph1118. Through whole-genome sequencing of strain A1-M5, sph1118 was found to harbour a mutation. In fact, sph1118 disruptant lost chemotaxis towards pectin, and this deficiency was recovered by complementation with wild-type sph1118. Interestingly, the gene disruptant also exhibited decreased pectin assimilation. Furthermore, the gene product SPH1118 was expressed in recombinant E. coli cells, purified and characterised. Differential scanning fluorimetry and UV absorption spectroscopy revealed that SPH1118 specifically binds to pectin with a dissociation constant of 8.5 μM. Using binding assay and primary structure analysis, SPH1118 was predicted to be a periplasmic pectin-binding protein associated with an ATP-binding cassette transporter. This is the first report on the identification and characterisation of a protein triggering chemotaxis towards the macromolecule pectin as well as its assimilation.
Collapse
|
6
|
Maruyama Y, Hashimoto W, Murata K. Structural studies on bacterial system used in the recognition and uptake of the macromolecule alginate. Biosci Biotechnol Biochem 2019; 83:794-802. [PMID: 30744540 DOI: 10.1080/09168451.2019.1578642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alginate is an acidic heteropolysaccharide produced by brown seaweed and certain kinds of bacteria. The cells of Sphingomonas sp. strain A1, a gram-negative bacterium, have several alginate-degrading enzymes in their cytoplasm and efficiently utilize this polymer for their growth. Sphingomonas sp. strain A1 cells can directly incorporate alginate into their cytoplasm through a transport system consisting of a "pit" on their cell surface, substrate-binding proteins in their periplasm, and an ATP-binding cassette transporter in their inner membrane. This review deals with the structural and functional aspects of bacterial systems necessary for the recognition and uptake of alginate.
Collapse
Affiliation(s)
- Yukie Maruyama
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan.,b Department of Life Science, Faculty of Science and Engineering , Setsunan University , Neyagawa, Osaka , Japan
| | - Wataru Hashimoto
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan
| | - Kousaku Murata
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan.,b Department of Life Science, Faculty of Science and Engineering , Setsunan University , Neyagawa, Osaka , Japan
| |
Collapse
|
7
|
Jian H, Wang H, Zeng X, Xiong L, Wang F, Xiao X. Characterization of the relationship between polar and lateral flagellar structural genes in the deep-sea bacterium Shewanella piezotolerans WP3. Sci Rep 2016; 6:39758. [PMID: 28004809 PMCID: PMC5178100 DOI: 10.1038/srep39758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
Bacteria with a dual flagellar system, which consists of a polar flagellum (PF) and several lateral flagella (LF), have been identified in diverse environments. Nevertheless, whether and how these two flagellar systems interact with each other is largely unknown. In the present study, the relationship between the structural genes for the PF and LF of the deep-sea bacterium Shewanella piezotolerans WP3 was investigated by genetic, phenotypic and phylogenetic analyses. The mutation of PF genes induced the expression of LF genes and the production of LF in liquid medium, while the defective LF genes led to a decrease in PF gene transcription. However, the level of PF flagellin remained unchanged in LF gene mutants. Further investigation showed that the flgH2 gene (encoding LF L-ring protein) can compensate for mutations of the flgH1 gene (encoding PF L-ring protein), but this compensation does not occur between the flagellar hook-filament junction proteins (FlgL1, FlgL2). Swarming motility was shown to specifically require LF genes, and PF genes cannot substitute for the LF genes in the lateral flagella synthesis. Considering the importance of flagella-dependent motility for bacterial survival in the abyssal sediment, our study thus provided a better understanding of the adaptation strategy of benthic bacteria.
Collapse
Affiliation(s)
- Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Han Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xianping Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lei Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
8
|
Kobayashi M, Konishi H, Maruyama Y, Murata K, Hashimoto W. Lateral-typed flagellin responsible for formation of a polar flagellum but not of lateral flagella in Sphingomonas sp. strain A1. Microbiology (Reading) 2016; 162:2042-2052. [DOI: 10.1099/mic.0.000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Masahiro Kobayashi
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hidenori Konishi
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0020. [PMID: 26370933 DOI: 10.1098/rstb.2015.0020] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|