1
|
Feng J, Li X, Teng X, Fan D, Yin J, Qiu Y, Yi Z, Chen L, Zhang HM, Rao C. Harnessing CO 2 Fixation and Reducing Power Recycling for Enhanced Polyhydroxyalkanoates Industrial Bioproduction. Metab Eng 2025:S1096-7176(25)00074-6. [PMID: 40318752 DOI: 10.1016/j.ymben.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Palm oil is an attractive feedstock for bioproduction due to its high carbon content and low cost. However, its metabolism generates excess reducing power, leading to redox imbalances and reduced metabolic efficiency in industrial fermentations. Through a model-driven approach integrating flux balance analysis, we activated the Calvin-Benson-Bassham (CBB) cycle in Cupriavidus necator to recycle surplus reducing power and restore metabolic balance in polyhydroxyalkanoate (PHA) bioproduction. Computational simulations predicted that constitutive activation of the CBB cycle enhanced CO2 fixation and accelerated biomass generation when utilizing palm oil as the carbon source. Model-guided optimization revealed that precise tuning of CBB activation strength was critical, as both insufficient and excessive activation led to metabolic inefficiencies. At the 2-liter bench-scale, CBB activation tuning resulted in biomass changes ranging from -18% to 21% and PHA yield changes ranging from -36% to 25%. Mechanistic studies demonstrated that CBB activation improves metabolic efficiency through reducing power recycling and carbon redistribution. In the 15 m3 industrial-scale fermentations, the engineered strain achieved a 20% higher PHA yield. These results demonstrate that recycling surplus reducing power is a scalable and robust strategy for enhanced bioproduction efficiency.
Collapse
Affiliation(s)
| | - Xueshan Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xin Teng
- Bluepha Co. Ltd., Shanghai, China
| | | | - Jin Yin
- Bluepha Co. Ltd., Shanghai, China
| | | | | | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
2
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
3
|
Mishra S, Perkovich PM, Mitchell WP, Venkataraman M, Pfleger BF. Expanding the synthetic biology toolbox of Cupriavidus necator for establishing fatty acid production. J Ind Microbiol Biotechnol 2024; 51:kuae008. [PMID: 38366943 PMCID: PMC10926325 DOI: 10.1093/jimb/kuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
The Gram-negative betaproteobacterium Cupriavidus necator is a chemolithotroph that can convert carbon dioxide into biomass. Cupriavidus necator has been engineered to produce a variety of high-value chemicals in the past. However, there is still a lack of a well-characterized toolbox for gene expression and genome engineering. Development and optimization of biosynthetic pathways in metabolically engineered microorganisms necessitates control of gene expression via functional genetic elements such as promoters, ribosome binding sites (RBSs), and codon optimization. In this work, a set of inducible and constitutive promoters were validated and characterized in C. necator, and a library of RBSs was designed and tested to show a 50-fold range of expression for green fluorescent protein (gfp). The effect of codon optimization on gene expression in C. necator was studied by expressing gfp and mCherry genes with varied codon-adaptation indices and was validated by expressing codon-optimized variants of a C12-specific fatty acid thioesterase to produce dodecanoic acid. We discuss further hurdles that will need to be overcome for C. necator to be widely used for biosynthetic processes.
Collapse
Affiliation(s)
- Shivangi Mishra
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paul M Perkovich
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | - Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, Valgepea K. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng 2022; 71:117-141. [DOI: 10.1016/j.ymben.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
5
|
Pan H, Wang J, Wu H, Li Z, Lian J. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:212. [PMID: 34736496 PMCID: PMC8570001 DOI: 10.1186/s13068-021-02063-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin-Benson-Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. MAIN BODY In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. CONCLUSIONS Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
6
|
Nowroth V, Marquart L, Jendrossek D. Low temperature-induced viable but not culturable state of Ralstonia eutropha and its relationship to accumulated polyhydroxybutyrate. FEMS Microbiol Lett 2016; 363:fnw249. [PMID: 27810883 PMCID: PMC5175184 DOI: 10.1093/femsle/fnw249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/26/2016] [Accepted: 10/29/2016] [Indexed: 12/25/2022] Open
Abstract
The culturability of Escherichia coli, Ralstonia eutropha and Bacillus subtilis after incubation in phosphate-buffered saline at either 5°C or 30°C was determined. The culturability of B. subtilis showed little dependence on temperature. The culturability of E. coli rapidly decreased at 30°C but remained almost constant at 5°C. In contrast, the culturability of R. eutropha decreased by three orders of magnitude at 5°C within 24 h but only moderately decreased (one order of magnitude) at 30°C. Remarkably, prolonged incubation of R. eutropha at 30°C resulted in a full recovery of colony forming units in contrast to only a partial recovery at 5°C. Ralstonia eutropha cells at 30°C remained culturable for 3 weeks while culturability at 5°C constantly decreased. The effect of temperature was significantly stronger in a polyhydroxybutyrate-negative mutant. Our data show that accumulated polyhydroxybutyrate has a cold-protective function and can prevent R. eutropha entering the viable but not culturable state.
Collapse
Affiliation(s)
- Verena Nowroth
- Institute of Microbiology, University of Stuttgart, 70550 Stuttgart, Germany
| | - Lisa Marquart
- Institute of Microbiology, University of Stuttgart, 70550 Stuttgart, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
7
|
Satagopan S, Tabita FR. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha. FEBS J 2016; 283:2869-80. [PMID: 27261087 DOI: 10.1111/febs.13774] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Recapturing atmospheric CO2 is key to reducing global warming and increasing biological carbon availability. Ralstonia eutropha is a biotechnologically useful aerobic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) for CO2 utilization, suggesting that it may be a useful host to bioselect RubisCO molecules with improved CO2 -capture capabilities. A host strain of R. eutropha was constructed for this purpose after deleting endogenous genes encoding two related RubisCOs. This strain could be complemented for CO2 -dependent growth by introducing native or heterologous RubisCO genes. Mutagenesis and suppressor selection identified amino acid substitutions in a hydrophobic region that specifically influences RubisCO's interaction with its substrates, particularly O2 , which competes with CO2 at the active site. Unlike most RubisCOs, the R. eutropha enzyme has evolved to retain optimal CO2 -fixation rates in a fast-growing host, despite the presence of high levels of competing O2 . Yet its structure-function properties resemble those of several commonly found RubisCOs, including the higher plant enzymes, allowing strategies to engineer analogous enzymes. Because R. eutropha can be cultured rapidly under harsh environmental conditions (e.g., with toxic industrial flue gas), in the presence of near saturation levels of oxygen, artificial selection and directed evolution studies in this organism could potentially impact efforts toward improving RubisCO-dependent biological CO2 utilization in aerobic environments. ENZYMES d-ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39; phosphoribulokinase, EC 2.7.1.19.
Collapse
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Abstract
Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) performs the key and rate-limiting step whereby CO2 is reduced and incorporated into a precursor organic metabolite. This is a highly regulated process in diverse organisms, with the expression of genes that comprise the CBB pathway (the cbb genes), including RubisCO, specifically controlled by the master transcriptional regulator protein CbbR. Many organisms have two or more cbb operons that either are regulated by a single CbbR or employ a specific CbbR for each cbb operon. CbbR family members are versatile and accommodate and bind many different effector metabolites that influence CbbR's ability to control cbb transcription. Moreover, two members of the CbbR family are further posttranslationally modified via interactions with other transcriptional regulator proteins from two-component regulatory systems, thus augmenting CbbR-dependent control and optimizing expression of specific cbb operons. In addition to interactions with small effector metabolites and other regulator proteins, CbbR proteins may be selected that are constitutively active and, in some instances, elevate the level of cbb expression relative to wild-type CbbR. Optimizing CbbR-dependent control is an important consideration for potentially using microbes to convert CO2 to useful bioproducts.
Collapse
|