1
|
Haase A, Sawers RG. Exchange of a Single Amino Acid Residue in the HybG Chaperone Allows Maturation of All H 2-Activating [NiFe]-Hydrogenases in Escherichia coli. Front Microbiol 2022; 13:872581. [PMID: 35422773 PMCID: PMC9002611 DOI: 10.3389/fmicb.2022.872581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of the NiFe(CN)2CO organometallic cofactor of [NiFe]-hydrogenase (Hyd) involves several discreet steps, including the synthesis of the Fe(CN)2CO group on a HypD-HypC scaffold complex. HypC has an additional function in transferring the Fe(CN)2CO group to the apo-precursor of the Hyd catalytic subunit. Bacteria that synthesize more than one Hyd enzyme often have additional HypC-type chaperones specific for each precursor. The specificity determinants of this large chaperone family are not understood. Escherichia coli synthesizes two HypC paralogs, HypC and HybG. HypC delivers the Fe(CN)2CO group to pre-HycE, the precursor of the H2-evolving Hyd-3 enzyme, while HybG transfers the group to the pre-HybC of the H2-oxidizing Hyd-2 enzyme. We could show that a conserved histidine residue around the amino acid position 50 in both HypC and HybG, when exchanged for an alanine, resulted in a severe reduction in the activity of its cognate Hyd enzyme. This reduction in enzyme activity proved to be due to the impaired ability of the chaperones to interact with HypD. Surprisingly, and only in the case of the HybGH52A variant, its co-synthesis with HypD improved its interaction with pre-HycE, resulting in the maturation of Hyd-3. This study demonstrates that the conserved histidine residue helps enhance the interaction of the chaperone with HypD, but additionally, and in E. coli only for HybG, acts as a determinant to prevent the inadvertent maturation of the wrong large-subunit precursor. This study identifies a new level of control exerted by a bacterium synthesizing multiple [NiFe]-Hyd to ensure the correct enzyme is matured only under the appropriate physiological conditions.
Collapse
Affiliation(s)
- Alexander Haase
- Institute of Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1. Microorganisms 2021; 9:microorganisms9020365. [PMID: 33673241 PMCID: PMC7918482 DOI: 10.3390/microorganisms9020365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
The strictly anaerobic bactGIerium Dehalococcoides mccartyi obligatorily depends on organohalide respiration for energy conservation and growth. The bacterium also plays an important role in bioremediation. Since there is no guarantee of a continuous supply of halogenated substrates in its natural environment, the question arises of how D. mccartyi maintains the synthesis and activity of dehalogenating enzymes under these conditions. Acetylation is a means by which energy-restricted microorganisms can modulate and maintain protein levels and their functionality. Here, we analyzed the proteome and Nε-lysine acetylome of D. mccartyi strain CBDB1 during growth with 1,2,3-trichlorobenzene as an electron acceptor. The high abundance of the membrane-localized organohalide respiration complex, consisting of the reductive dehalogenases CbrA and CbdbA80, the uptake hydrogenase HupLS, and the organohalide respiration-associated molybdoenzyme OmeA, was shown throughout growth. In addition, the number of acetylated proteins increased from 5% to 11% during the transition from the exponential to the stationary phase. Acetylation of the key proteins of central acetate metabolism and of CbrA, CbdbA80, and TatA, a component of the twin-arginine translocation machinery, suggests that acetylation might contribute to maintenance of the organohalide-respiring capacity of the bacterium during the stationary phase, thus providing a means of ensuring membrane protein integrity and a proton gradient.
Collapse
|
3
|
Budhraja R, Ding C, Walter P, Wagner S, Reemtsma T, Gary Sawers R, Adrian L. The impact of species, respiration type, growth phase and genetic inventory on absolute metal content of intact bacterial cells. Metallomics 2019; 11:925-935. [DOI: 10.1039/c9mt00009g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absolute metal ion content was determined from whole cells of different microbial species and changes were related to growth conditions and change of encoded genes.
Collapse
Affiliation(s)
- Rohit Budhraja
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
- Chair of Geobiotechnology
| | - Chang Ding
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
| | - Philipp Walter
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
| | - Stephan Wagner
- Helmholtz Centre for Environmental Research – UFZ
- Department of Analytical Chemistry
- Leipzig
- Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research – UFZ
- Department of Analytical Chemistry
- Leipzig
- Germany
| | - R. Gary Sawers
- Institute of Biology/Microbiology
- Martin-Luther Universität
- Halle
- Germany
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research – UFZ
- Isotope Biogeochemistry
- 04318 Leipzig
- Germany
- Chair of Geobiotechnology
| |
Collapse
|
4
|
Dragomirova N, Rothe P, Schwoch S, Hartwig S, Pinske C, Sawers RG. Insights Into the Redox Sensitivity of Chloroflexi Hup-Hydrogenase Derived From Studies in Escherichia coli: Merits and Pitfalls of Heterologous [NiFe]-Hydrogenase Synthesis. Front Microbiol 2018; 9:2837. [PMID: 30519233 PMCID: PMC6258894 DOI: 10.3389/fmicb.2018.02837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
The highly oxygen-sensitive hydrogen uptake (Hup) hydrogenase from Dehalococcoides mccartyi forms part of a protein-based respiratory chain coupling hydrogen oxidation with organohalide reduction on the outside of the cell. The HupXSL proteins were previously shown to be synthesized and enzymatically active in Escherichia coli. Here we examined the growth conditions that deliver active Hup enzyme that couples H2 oxidation to benzyl viologen (BV) reduction, and identified host factors important for this process. In a genetic background lacking the three main hydrogenases of E. coli we could show that additional deletion of genes necessary for selenocysteine biosynthesis resulted in inactive Hup enzyme, suggesting requirement of a formate dehydrogenase for Hup activity. Hup activity proved to be dependent on the presence of formate dehydrogenase (Fdh-H), which is typically associated with the H2-evolving formate hydrogenlyase (FHL) complex in the cytoplasm. Further analyses revealed that heterologous Hup activity could be recovered if the genes encoding the ferredoxin-like electron-transfer protein HupX, as well as the related HycB small subunit of Fdh-H were also deleted. These findings indicated that the catalytic HupL and electron-transferring HupS subunits were sufficient for enzyme activity with BV. The presence of the HupX or HycB proteins in the absence of Fdh-H therefore appears to cause inactivation of the HupSL enzyme. This is possibly because HupX or HycB aided transfer of electrons to the quinone pool or other oxidoreductase complexes, thus maintaining the HupSL heterodimer in a continuously oxidized state causing its inactivation. This proposal was supported by the observation that growth under either aerobic or anaerobic respiratory conditions did not yield an active HupSL. These studies thus provide a system to understand the redox sensitivity of this heterologously synthesized hydrogenase.
Collapse
Affiliation(s)
- Nadya Dragomirova
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Patricia Rothe
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Schwoch
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Stefanie Hartwig
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Constanze Pinske
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Seidel K, Kühnert J, Adrian L. The Complexome of Dehalococcoides mccartyi Reveals Its Organohalide Respiration-Complex Is Modular. Front Microbiol 2018; 9:1130. [PMID: 29946299 PMCID: PMC6005880 DOI: 10.3389/fmicb.2018.01130] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022] Open
Abstract
Dehalococcoides mccartyi strain CBDB1 is a slow growing strictly anaerobic microorganism dependent on halogenated compounds as terminal electron acceptor for anaerobic respiration. Indications have been described that the membrane-bound proteinaceous organohalide respiration complex of strain CBDB1 is functional without quinone-mediated electron transfer. We here study this multi-subunit protein complex in depth in regard to participating protein subunits and interactions between the subunits using blue native gel electrophoresis coupled to mass spectrometric label-free protein quantification. Applying three different solubilization modes to detach the respiration complex from the membrane we describe different solubilization snapshots of the organohalide respiration complex. The results demonstrate the existence of a two-subunit hydrogenase module loosely binding to the rest of the complex, tight binding of the subunit HupX to OmeA and OmeB, predicted to be the two subunits of a molybdopterin-binding redox subcomplex, to form a second module, and the presence of two distinct reductive dehalogenase module variants with different sizes. In our data we obtained biochemical evidence for the specificity between a reductive dehalogenase RdhA (CbdbA80) and its membrane anchor protein RdhB (CbdbB3). We also observed weak interactions between the reductive dehalogenase and the hydrogenase module suggesting a not yet recognized contact surface between these two modules. Especially an interaction between the two integral membrane subunits OmeB and RdhB seems to promote the integrity of the complex. With the different solubilization strengths we observe successive disintegration of the complex into its subunits. The observed architecture would allow the association of different reductive dehalogenase modules RdhA/RdhB with the other two protein complex modules when the strain is growing on different electron acceptors. In the search for other respiratory complexes in strain CBDB1 the remarkable result is not the detection of a standard ATPase but the absence of any other abundant membrane complex although an 11-subunit version of complex I (Nuo) is encoded in the genome.
Collapse
Affiliation(s)
- Katja Seidel
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Joana Kühnert
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Schubert T, Adrian L, Sawers RG, Diekert G. Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol Ecol 2018; 94:4923014. [DOI: 10.1093/femsec/fiy035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Torsten Schubert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
- Department of Geobiotechnology, Technische Universität Berlin, Ackerstraße 74, D-13355 Berlin, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
7
|
Lamont CM, Sargent F. Design and characterisation of synthetic operons for biohydrogen technology. Arch Microbiol 2016; 199:495-503. [PMID: 27872947 PMCID: PMC5350229 DOI: 10.1007/s00203-016-1322-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Biohydrogen is produced by a number of microbial systems and the commonly used host bacterium Escherichia coli naturally produces hydrogen under fermentation conditions. One approach to engineering additional hydrogen production pathways is to introduce non-native hydrogenases into E. coli. An attractive candidate is the soluble [NiFe]-hydrogenase from Ralstonia eutropha, which has been shown to link NADH/NAD+ biochemistry directly to hydrogen metabolism, an activity that E. coli does not perform. In this work, three synthetic operons were designed that code for the soluble hydrogenase and two different enzyme maturase systems. Interestingly, using this system, the recombinant soluble hydrogenase was found to be assembled by the native E. coli [NiFe]-hydrogenase assembly machinery, and, vice versa, the synthetic maturase operons were able to complement E. coli mutants defective in hydrogenase biosynthesis. The heterologously expressed soluble hydrogenase was found to be active and was shown to produce biohydrogen in vivo.
Collapse
Affiliation(s)
- Ciaran M Lamont
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, MSI/WTB/JBC/DCTIR Research Complex, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Frank Sargent
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, MSI/WTB/JBC/DCTIR Research Complex, Dow Street, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
8
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|