1
|
Falke D, Fischer M, Ihling C, Hammerschmidt C, Sinz A, Sawers G. Co-purification of nitrate reductase 1 with components of the cytochrome bcc-aa 3 oxidase supercomplex from spores of Streptomyces coelicolor A3(2). FEBS Open Bio 2021; 11:652-669. [PMID: 33462996 PMCID: PMC7931247 DOI: 10.1002/2211-5463.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
In order to reduce nitrate in vivo, the spore‐specific respiratory nitrate reductase, Nar1, of Streptomyces coelicolor relies on an active cytochrome bcc‐aa3 oxidase supercomplex (bcc‐aa3 supercomplex). This suggests that membrane‐associated Nar1, comprising NarG1, NarH1, and NarI1 subunits, might not act as a classical menaquinol oxidase but could either receive electrons from the bcc‐aa3 supercomplex, or require the supercomplex to stabilize the reductase in the membrane to allow it to function. To address the biochemical basis for this dependence on the bcc‐aa3 supercomplex, we purified two different Strep‐tagged variants of Nar1 and enriched the native enzyme complex from spore extracts using different chromatographic and electrophoretic procedures. Polypeptides associated with the isolated Nar1 complexes were identified using mass spectrometry and included components of the bcc‐aa3 supercomplex, along with an alternative, spore‐specific cytochrome b component, QcrB3. Surprisingly, we also co‐enriched the Nar3 enzyme with Nar1 from the wild‐type strain of S. coelicolor. Two differentially migrating active Nar1 complexes could be identified after clear native polyacrylamide gel electrophoresis; these had masses of approximately 450 and 250 kDa. The distribution of active Nar1 in these complexes was influenced by the presence of cytochrome bd oxidase and by QcrB3; the presence of the latter shifted Nar1 into the larger complex. Together, these data suggest that several respiratory complexes can associate in the spore membrane, including Nar1, Nar3, and the bcc‐aa3 supercomplex. Moreover, these findings provide initial support for the hypothesis that Nar1 and the bcc‐aa3 supercomplex physically associate.
Collapse
Affiliation(s)
- Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marco Fischer
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Hammerschmidt
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Unden G, Klein R. Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate. Environ Microbiol 2020; 23:5-14. [PMID: 33089915 DOI: 10.1111/1462-2920.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrate respiration is subject to anaerobic induction, without direct nitrate induction. In contrast, the NreA-NreB-NreC two-component system of Staphylococcus (Firmicutes) performs joint sensing of O2 and nitrate by interacting O2 and nitrate sensors. The O2 -sensor NreB phosphorylates the response regulator NreC to activate narGHJI expression. NreC-P transmits the signal for anaerobiosis to the promoter. The nitrate sensor NreA modulates NreB function by converting NreB in the absence of nitrate from the kinase to a phosphatase that dephosphorylates NreC-P. Thus, widely different strategies for coordinating the response to O2 and nitrate have evolved in bacteria.
Collapse
Affiliation(s)
- Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| | - Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| |
Collapse
|
3
|
Millan-Oropeza A, Henry C, Lejeune C, David M, Virolle MJ. Expression of genes of the Pho regulon is altered in Streptomyces coelicolor. Sci Rep 2020; 10:8492. [PMID: 32444655 PMCID: PMC7244524 DOI: 10.1038/s41598-020-65087-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Most currently used antibiotics originate from Streptomycetes and phosphate limitation is an important trigger of their biosynthesis. Understanding the molecular processes underpinning such regulation is of crucial importance to exploit the great metabolic diversity of these bacteria and get a better understanding of the role of these molecules in the physiology of the producing bacteria. To contribute to this field, a comparative proteomic analysis of two closely related model strains, Streptomyces lividans and Streptomyces coelicolor was carried out. These strains possess identical biosynthetic pathways directing the synthesis of three well-characterized antibiotics (CDA, RED and ACT) but only S. coelicolor expresses them at a high level. Previous studies established that the antibiotic producer, S. coelicolor, is characterized by an oxidative metabolism and a reduced triacylglycerol content compared to the none producer, S. lividans, characterized by a glycolytic metabolism. Our proteomic data support these findings and reveal that these drastically different metabolic features could, at least in part, due to the weaker abundance of proteins of the two component system PhoR/PhoP in S. coelicolor compared to S. lividans. In condition of phosphate limitation, PhoR/PhoP is known to control positively and negatively, respectively, phosphate and nitrogen assimilation and our study revealed that it might also control the expression of some genes of central carbon metabolism. The tuning down of the regulatory role of PhoR/PhoP in S. coelicolor is thus expected to be correlated with low and high phosphate and nitrogen availability, respectively and with changes in central carbon metabolic features. These changes are likely to be responsible for the observed differences between S. coelicolor and S. lividans concerning energetic metabolism, triacylglycerol biosynthesis and antibiotic production. Furthermore, a novel view of the contribution of the bio-active molecules produced in this context, to the regulation of the energetic metabolism of the producing bacteria, is proposed and discussed.
Collapse
Affiliation(s)
- Aaron Millan-Oropeza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Lejeune
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Michelle David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie-Joelle Virolle
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Sawers RG, Fischer M, Falke D. Anaerobic nitrate respiration in the aerobe Streptomyces coelicolor A3(2): helping maintain a proton gradient during dormancy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:645-650. [PMID: 31268622 DOI: 10.1111/1758-2229.12781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
Respiratory nitrate reductases (Nar) catalyse the reduction of nitrate to nitrite, coupling this process to energy conservation. The obligate aerobic actinobacterium Streptomyces coelicolor synthesizes three Nar enzymes that contribute to maintenance of a membrane potential when either the mycelium or the spores become hypoxic or anoxic. No growth occurs under such conditions but the bacterium survives the lack of O2 by remaining metabolically active; reducing nitrate is one means whereby this process is aided. Nar1 is exclusive to spores, Nar2 to vegetative mycelium and Nar3 to stationary-phase mycelium, each making a distinct contribution to energy conservation. While Nar2 and Nar3 appear to function like conventional menaquinol oxidases, unusually, Nar1 is completely dependent for its activity on a cytochrome bcc-aa 3 oxidase supercomplex. This suggest that electrons within this supercomplex are diverted to Nar1 during O2 limitation. Receiving electrons from this supercomplex potentially allows nitrate reduction to be coupled to the Q-cycle of the cytochrome bcc complex. This modification likely improves the efficiency of energy conservation, extending longevity of spores under O2 limitation. Knowledge gained on the bioenergetics of NO3 - respiration in the actinobacteria will aid our understanding of how many microorganisms survive under conditions of extreme nutrient and energy restriction.
Collapse
Affiliation(s)
- R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Marco Fischer
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| |
Collapse
|
5
|
Fischer M, Falke D, Rönitz J, Haase A, Damelang T, Pawlik T, Sawers RG. Hypoxia-induced synthesis of respiratory nitrate reductase 2 of Streptomyces coelicolor A3(2) depends on the histidine kinase OsdK in mycelium but not in spores. MICROBIOLOGY-SGM 2019; 165:905-916. [PMID: 31259680 DOI: 10.1099/mic.0.000829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The three nitrate reductases (Nar) of the saprophytic aerobic actinobacterium Streptomyces coelicolor A3(2) contribute to survival when oxygen becomes limiting. In the current study, we focused on synthesis of the Nar2 enzyme, which is the main Nar enzyme present and active in exponentially growing mycelium. Synthesis of Nar2 can, however, also be induced in spores after extended periods of anoxic incubation. The osdRK genes (oxygen stress and development) were recently identified to encode a two-component system important for expression of the nar2 operon in mycelium. OsdK is a predicted histidine kinase and we show here that an osdK mutant completely lacks Nar2 enzyme activity in mycelium. Recovery of Nar2 enzyme activity was achieved by re-introduction of the osdRK genes into the mutant on an integrative plasmid. In anoxically incubated spores, however, the osdK mutant retained the ability to synthesize NarG2, the catalytic subunit of Nar2. We could also demonstrate that synthesis of NarG2 in spores occurred only under hypoxic conditions; anoxia, as well as O2 concentrations significantly higher than 1 % in the gas-phase, failed to result in induction of NarG2 synthesis. Together, these findings indicate that, although Nar2 synthesis in both mycelium and spores is induced by oxygen limitation, different mechanisms control these processes and only Nar2 synthesis in mycelium is under the control of the OsdKR two-component system.
Collapse
Affiliation(s)
- Marco Fischer
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Dörte Falke
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Jakob Rönitz
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Alexander Haase
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Timon Damelang
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Tony Pawlik
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Activity of Spore-Specific Respiratory Nitrate Reductase 1 of Streptomyces coelicolor A3(2) Requires a Functional Cytochrome bcc-aa 3 Oxidase Supercomplex. J Bacteriol 2019; 201:JB.00104-19. [PMID: 30858301 DOI: 10.1128/jb.00104-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Spores have strongly reduced metabolic activity and are produced during the complex developmental cycle of the actinobacterium Streptomyces coelicolor Resting spores can remain viable for decades, yet little is known about how they conserve energy. It is known, however, that they can reduce either oxygen or nitrate using endogenous electron sources. S. coelicolor uses either a cytochrome bd oxidase or a cytochrome bcc-aa 3 oxidase supercomplex to reduce oxygen, while nitrate is reduced by Nar-type nitrate reductases, which typically oxidize quinol directly. Here, we show that in resting spores the Nar1 nitrate reductase requires a functional bcc-aa 3 supercomplex to reduce nitrate. Mutants lacking the complete qcr-cta genetic locus encoding the bcc-aa 3 supercomplex showed no Nar1-dependent nitrate reduction. Recovery of Nar1 activity was achieved by genetic complementation but only when the complete qcr-cta locus was reintroduced to the mutant strain. We could exclude that the dependence on the supercomplex for nitrate reduction was via regulation of nitrate transport. Moreover, the catalytic subunit, NarG1, of Nar1 was synthesized in the qcr-cta mutant, ruling out transcriptional control. Constitutive synthesis of Nar1 in mycelium revealed that the enzyme was poorly active in this compartment, suggesting that the Nar1 enzyme cannot act as a typical quinol oxidase. Notably, nitrate reduction by the Nar2 enzyme, which is active in growing mycelium, was not wholly dependent on the bcc-aa 3 supercomplex for activity. Together, our data suggest that Nar1 functions together with the proton-translocating bcc-aa 3 supercomplex to increase the efficiency of energy conservation in resting spores.IMPORTANCE Streptomyces coelicolor forms spores that respire with either oxygen or nitrate, using only endogenous electron donors. This helps maintain a membrane potential and, thus, viability. Respiratory nitrate reductase (Nar) usually receives electrons directly from reduced quinone species; however, we show that nitrate respiration in spores requires a respiratory supercomplex comprising cytochrome bcc oxidoreductase and aa 3 oxidase. Our findings suggest that the Nar1 enzyme in the S. coelicolor spore functions together with the proton-translocating bcc-aa 3 supercomplex to help maintain the membrane potential more efficiently. Dissecting the mechanisms underlying this survival strategy is important for our general understanding of bacterial persistence during infection processes and of how bacteria might deal with nutrient limitation in the natural environment.
Collapse
|
7
|
Gallagher KA, Wanger G, Henderson J, Llorente M, Hughes CC, Jensen PR. Ecological implications of hypoxia-triggered shifts in secondary metabolism. Environ Microbiol 2017; 19:2182-2191. [PMID: 28205416 DOI: 10.1111/1462-2920.13700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Abstract
Members of the actinomycete genus Streptomyces are non-motile, filamentous bacteria that are well-known for the production of biomedically relevant secondary metabolites. While considered obligate aerobes, little is known about how these bacteria respond to periods of reduced oxygen availability in their natural habitats, which include soils and ocean sediments. Here, we provide evidence that the marine streptomycete strain CNQ-525 can reduce MnO2 via a diffusible mechanism. We investigated the effects of hypoxia on secondary metabolite production and observed a shift away from the antibiotic napyradiomycin towards 8-amino-flaviolin, an intermediate in the napyradiomycin biosynthetic pathway. We purified 8-amino-flaviolin and demonstrated that it is reversibly redox-active (midpoint potential -474.5 mV), indicating that it has the potential to function as an endogenous extracellular electron shuttle. This study provides evidence that environmentally triggered changes in secondary metabolite production may provide clues to the ecological functions of specific compounds, and that Gram-positive bacteria considered to be obligate aerobes may play previously unrecognized roles in biogeochemical cycling through mechanisms that include extracellular electron shuttling.
Collapse
Affiliation(s)
- Kelley A Gallagher
- Scripps Institution of Oceanography, Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, USA
| | - Greg Wanger
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jane Henderson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Mark Llorente
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Chambers C Hughes
- Scripps Institution of Oceanography, Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, USA
| | - Paul R Jensen
- Scripps Institution of Oceanography, Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|