1
|
Tagua VG, Molina‐Henares MA, Travieso ML, Nisa‐Martínez R, Quesada JM, Espinosa‐Urgel M, Ramos‐González MI. C‐di‐GMP
and biofilm are regulated in
Pseudomonas putida
by the
CfcA
/
CfcR
two‐component system in response to salts. Environ Microbiol 2022; 24:158-178. [DOI: 10.1111/1462-2920.15891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor G. Tagua
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | | - María L. Travieso
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Rafael Nisa‐Martínez
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - José Miguel Quesada
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Manuel Espinosa‐Urgel
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | |
Collapse
|
2
|
Ortet P, Fochesato S, Bitbol AF, Whitworth DE, Lalaouna D, Santaella C, Heulin T, Achouak W, Barakat M. Evolutionary history expands the range of signaling interactions in hybrid multikinase networks. Sci Rep 2021; 11:11763. [PMID: 34083699 PMCID: PMC8175716 DOI: 10.1038/s41598-021-91260-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Two-component systems (TCSs) are ubiquitous signaling pathways, typically comprising a sensory histidine kinase (HK) and a response regulator, which communicate via intermolecular kinase-to-receiver domain phosphotransfer. Hybrid HKs constitute non-canonical TCS signaling pathways, with transmitter and receiver domains within a single protein communicating via intramolecular phosphotransfer. Here, we report how evolutionary relationships between hybrid HKs can be used as predictors of potential intermolecular and intramolecular interactions (‘phylogenetic promiscuity’). We used domain-swap genes chimeras to investigate the specificity of phosphotransfer within hybrid HKs of the GacS–GacA multikinase network of Pseudomonas brassicacearum. The receiver domain of GacS was replaced with those from nine donor hybrid HKs. Three chimeras with receivers from other hybrid HKs demonstrated correct functioning through complementation of a gacS mutant, which was dependent on strains having a functional gacA. Formation of functional chimeras was predictable on the basis of evolutionary heritage, and raises the possibility that HKs sharing a common ancestor with GacS might remain components of the contemporary GacS network. The results also demonstrate that understanding the evolutionary heritage of signaling domains in sophisticated networks allows their rational rewiring by simple domain transplantation, with implications for the creation of designer networks and inference of functional interactions.
Collapse
Affiliation(s)
- Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Sylvain Fochesato
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Anne-Florence Bitbol
- CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (UMR8237), Sorbonne Université, 75005, Paris, France.,Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DD, UK
| | - David Lalaouna
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France.,CNRS, ARN UPR 9002, Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France.
| |
Collapse
|
3
|
Circular pellicles formed by Pseudomonas alkylphenolica KL28 are a sophisticated architecture principally designed by matrix substance. J Microbiol 2018; 56:790-797. [PMID: 30353464 DOI: 10.1007/s12275-018-8252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
The colonization of liquid surfaces as floating biofilms or pellicles is a bacterial adaptation to optimally occupy the airliquid (A-L) niche. In aerobic heterotrophs, pellicle formation is beneficial for the utilization of O2 and nonpolar organic compounds. Pseudomonas alkylphenolica KL28, an alkylphenol degrader, forms flat circular pellicles that are 0.3-0.5 mm in diameter. In this study, we first monitored the pellicle developmental patterns of multicellular organization from the initial settlement stage. The pellicles developed by clonal growth and mutants for flagella and pilus formation established normal pellicles. In contrast, the mutants of an epm gene cluster for biosynthesis of alginate-like polymer were incompetent in cell alignment for initial two-dimensional (2D) pellicle growth, suggesting the role of the Epm polymer as a structural scaffold for pellicle biofilms. Microscopic observation revealed that the initial 2D growth transited to multilayers by an accumulated self-produced extracellular polymeric substance that may exert a constraint force. Electron microscopy and confocal laser scanning microscopy revealed that the fully matured pellicle structures were densly packed with matrix-encased cells displaying distinct arrangements. The cells on the surface of the pellicle were relatively flat, and those inside were longitudinally cross-packed. The extracellular polysaccharide stained by Congo red was denser on the pellicle rim and a thin film was observed in the open spaces, indicative of its role in pellicle flotation. Our results demonstrate that P. alkylphenolica KL28 coordinately dictates the cell arrangements of pellicle biofilms by the controlled growth of constituent cells that accumulate extracellular polymeric substances.
Collapse
|