1
|
Zhang H, Zhou X, Wang X, Zheng J, Feng Y. A Methyl-Accepting Chemotaxis Protein MCP-5685 Associated with Indole Synthesis in Pantoea ananatis YJ76 Influences its Plant Growth-Promoting Potential and Adaptability to Stress Conditions. Curr Microbiol 2025; 82:281. [PMID: 40327119 DOI: 10.1007/s00284-025-04252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Pantoea ananatis YJ76 is a predominant endophytic diazotrophic bacterium isolated from rice, which can produce indole as a signal to improve stress resistance, colonization, and growth-promoting effect on the host. Methyl-accepting chemotaxis proteins (MCPs) are the main chemoreceptor in bacteria and participate in regulating various cellular activities. By constructing an mTn5 transposon mutant library of YJ76, we screened out a mutant with decreased indole production. And its ability to resist stresses and starvation, as well as colonizing and growth-promoting effect on host rice plants, was inhibited. Using the hiTAIL-PCR technique combined the genome re-sequencing, the mutation site was identified as the mcp-5685 gene with a length of 1545 bp. Bioinformatics analysis and chemotaxis experiments showed that the MCP encoded by mcp-5685 had L-serine chemotaxis functions, revealing the mechanism of the gene encoding protein to drive L-serine uptake, a key component for tryptophan synthesis, and thus promote indole synthesis in the regulatory pathways for indole synthesis. Starting from the upstream regulation direction of indole synthesis, this study breaks through the previous researching limitation of focusing only on the downstream physiological function regulation of indole and provides new ideas for studying the indole signal.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinyi Zhou
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xueying Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
2
|
Zhang L, Yu J, Zheng J, Wu L, Zhou X, Ban Y, Sun Y, Zhang H, Feng Y. A new l-serine binding orphan SerBP affects indole synthesis in Pantoea ananatis. J Basic Microbiol 2023; 63:1348-1360. [PMID: 37495561 DOI: 10.1002/jobm.202300165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Indole is traditionally known as a metabolite of l-tryptophan and now as an important signaling molecule in bacteria, however, the understanding of its upstream synthesis regulation is very limited. Pantoea ananatis YJ76, a predominant diazotrophic endophyte isolated from rice (Oryza sativa), can produce indole to regulate various physiological and biochemical behaviors. We constructed a mutant library of YJ76 using the mTn5 transposon insertion mutation method, from which an indole-deficient mutant was screened out. Via high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR), the transposon was determined to be inserted in a gene (RefSeq: WP014605468.1) of unknown function that is highly conserved at the intraspecific level. Bioinformatics analysis implied that the protein (Protein ID: WP089517194.1) encoded by the mutant gene is most likely to be a new orphan substrate-binding protein (SBP) for amino acid ABC transporters. Amino acid supplement cultivation experiments and surface plasmon resonance revealed that the protein could bind to l-serine (KD = 6.149 × 10-5 M). Therefore, the SBP was named as SerBP. This is the first case that a SBP responds to l-serine ABC transports. As a precursor of indole synthesis, the transmembrane transported l-serine was directly correlated with indole signal production and the mutation of serBP gene weakened the resistance of YJ76 to antibiotics, alkali, heavy metals, and starvation. This study provided a new paradigm for exploring the upstream regulatory pathway for indole synthesis of bacteria.
Collapse
Affiliation(s)
- Lei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiajia Yu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqing Wu
- Center of Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xinyi Zhou
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yali Ban
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuanhao Sun
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Haotian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Xiang X, Poli D, Degnan BM, Degnan SM. Ribosomal RNA-Depletion Provides an Efficient Method for Successful Dual RNA-Seq Expression Profiling of a Marine Sponge Holobiont. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:722-732. [PMID: 35895230 PMCID: PMC9385839 DOI: 10.1007/s10126-022-10138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Investigations of host-symbiont interactions can benefit enormously from a complete and reliable holobiont gene expression profiling. The most efficient way to acquire holobiont transcriptomes is to perform RNA-Seq on both host and symbionts simultaneously. However, optimal methods for capturing both host and symbiont mRNAs are still under development, particularly when the host is a eukaryote and the symbionts are bacteria or archaea. Traditionally, poly(A)-enriched libraries have been used to capture eukaryotic mRNA, but the ability of this method to adequately capture bacterial mRNAs is unclear because of the short half-life of the bacterial transcripts. Here, we address this gap in knowledge with the aim of helping others to choose an appropriate RNA-Seq approach for analysis of animal host-bacterial symbiont transcriptomes. Specifically, we compared transcriptome bias, depth and coverage achieved by two different mRNA capture and sequencing strategies applied to the marine demosponge Amphimedon queenslandica holobiont. Annotated genomes of the sponge host and the three most abundant bacterial symbionts, which can comprise up to 95% of the adult microbiome, are available. Importantly, this allows for transcriptomes to be accurately mapped to these genomes, and thus quantitatively assessed and compared. The two strategies that we compare here are (i) poly(A) captured mRNA-Seq (Poly(A)-RNA-Seq) and (ii) ribosomal RNA depleted RNA-Seq (rRNA-depleted-RNA-Seq). For the host sponge, we find no significant difference in transcriptomes generated by the two different mRNA capture methods. However, for the symbiont transcriptomes, we confirm the expectation that the rRNA-depleted-RNA-Seq performs much better than the Poly(A)-RNA-Seq. This comparison demonstrates that RNA-Seq by ribosomal RNA depletion is an effective and reliable method to simultaneously capture gene expression in host and symbionts and thus to analyse holobiont transcriptomes.
Collapse
Affiliation(s)
- Xueyan Xiang
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Present Address: BGI-Shenzhen, Shenzhen, 518083 China
| | - Davide Poli
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Present Address: School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
4
|
Zheng J, Liu Q, Xia Y, Bai L, Feng Y. Pantoea agglomerans YS19 poly(A) polymerase I gene possesses the indole-sensing sequence in the promoter region. FEMS Microbiol Lett 2019; 366:5538762. [PMID: 31344226 DOI: 10.1093/femsle/fnz166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Pantoea agglomerans YS19 is a predominant diazotrophic endophyte with multiple growth-promoting effects on its host plant that was isolated from rice. Indole is confirmed to induce many changes of physiological and biochemical characteristics in bacteria. Although YS19 cannot produce indole, it can sense indole in the environment and be regulated by indole. Here, using gfp as a reporter gene, we constructed a series of recombinant plasmids containing the promoter region of the poly(A) polymerase I gene (pcnB) fused with gfp, and compared the green fluorescence intensity at different concentrations of exogenous indole by a flow cytometer. In this research, we confirmed that exogenous indole significantly inhibited the expression of pcnB by its promoter; the regulation sequence sensitive to indole in the promoter region of the pcnB gene (In-pcnB) was between -129 and -88 bp. In-pcnB is widely distributed and strictly conserved in the same genus. These results suggest novel roles of In-pcnB in P. agglomerans YS19, showing its special relation to the indole regulatory pathway.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Qi Liu
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Yifan Xia
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Lijuan Bai
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| |
Collapse
|
5
|
Zheng J, Xia Y, Liu Q, He X, Yu J, Feng Y. Extracellular DNA enhances the formation and stability of symplasmata in Pantoea agglomerans YS19. J GEN APPL MICROBIOL 2019; 65:11-17. [PMID: 30185735 DOI: 10.2323/jgam.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extracellular DNA (eDNA) is an important polymeric substance that plays essential roles in cell aggregation and nutrient provision for the sessile bacteria. eDNA in bacterial biofilms was extensively studied. Here we found that eDNA also exists in symplasmata, a bacterial cell aggregate, which is different to a biofilm, in the rice enophyte Pantoea agglomerans YS19. We found that exogenous eDNA enhanced the formation and stability of symplasmata significantly, and that, exogenous eDNA also improved the stress resistance and colonization ability of the bacterium on host rice. These results strongly indicate novel roles of the eDNA in Pantoea agglomerans YS19, showing its special relation to the stress-resistance and endophyte-host association of the strain.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology
| | - Yifan Xia
- School of Life Science, Beijing Institute of Technology
| | - Qi Liu
- School of Life Science, Beijing Institute of Technology
| | - Xinyu He
- School of Life Science, Beijing Institute of Technology
| | - Jiajia Yu
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
6
|
Hajnsdorf E, Kaberdin VR. RNA polyadenylation and its consequences in prokaryotes. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0166. [PMID: 30397102 DOI: 10.1098/rstb.2018.0166] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 11/12/2022] Open
Abstract
Post-transcriptional addition of poly(A) tails to the 3' end of RNA is one of the fundamental events controlling the functionality and fate of RNA in all kingdoms of life. Although an enzyme with poly(A)-adding activity was discovered in Escherichia coli more than 50 years ago, its existence and role in prokaryotic RNA metabolism were neglected for many years. As a result, it was not until 1992 that E. coli poly(A) polymerase I was purified to homogeneity and its gene was finally identified. Further work revealed that, similar to its role in surveillance of aberrant nuclear RNAs of eukaryotes, the addition of poly(A) tails often destabilizes prokaryotic RNAs and their decay intermediates, thus facilitating RNA turnover. Moreover, numerous studies carried out over the last three decades have shown that polyadenylation greatly contributes to the control of prokaryotic gene expression by affecting the steady-state level of diverse protein-coding and non-coding transcripts including antisense RNAs involved in plasmid copy number control, expression of toxin-antitoxin systems and bacteriophage development. Here, we review the main findings related to the discovery of polyadenylation in prokaryotes, isolation, and characterization and regulation of bacterial poly(A)-adding activities, and discuss the impact of polyadenylation on prokaryotic mRNA metabolism and gene expression.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Eliane Hajnsdorf
- CNRS UMR8261 associated with University Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain .,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| |
Collapse
|
7
|
Zheng J, Yu J, Jia M, Zheng L, Feng Y. Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions. J Basic Microbiol 2017; 57:633-639. [PMID: 28485502 DOI: 10.1002/jobm.201700027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 11/07/2022]
Abstract
Pantoea ananatis YJ76 is an indole-producing predominant diazotrophic endophyte isolated from rice having multiple growth-promoting effects on host plant. As a decomposition metabolite of L-tryptophan (L-Trp), indole is confirmed to regulate various physiological processes of bacteria. In this research, we found that indole significantly improves the survival of YJ76 in face of starvation conditions and the promoting effect is related to the glycogen accumulation promoted by indole, which is much more significant in the middle decline phase than in other growth phases. Since carbon storage regulator CsrA is a key inhibiting factor on the storage of glycogen in bacteria, we explored the relation between indole-enhanced glycogen accumulation and csrA expression and found that there is a positive correlation between indole-enhanced glycogen accumulation and the indole-inhibited csrA expression in YJ76, which implies the potential relation between CsrA regulation and indole regulatory pathway.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Jiajia Yu
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Mengqi Jia
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Liping Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|