1
|
Núñez C, López-Pliego L, Ahumada-Manuel CL, Castañeda M. Genetic Regulation of Alginate Production in Azotobacter vinelandii a Bacterium of Biotechnological Interest: A Mini-Review. Front Microbiol 2022; 13:845473. [PMID: 35401471 PMCID: PMC8988225 DOI: 10.3389/fmicb.2022.845473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Alginates are a family of polymers composed of guluronate and mannuronate monomers joined by β (1–4) links. The different types of alginates have variations in their monomer content and molecular weight, which determine the rheological properties and their applications. In industry, alginates are commonly used as additives capable of viscosifying, stabilizing, emulsifying, and gelling aqueous solutions. Recently, additional specialized biomedical uses have been reported for this polymer. Currently, the production of alginates is based on the harvesting of seaweeds; however, the composition and structure of the extracts are highly variable. The production of alginates for specialized applications requires a precise composition of monomers and molecular weight, which could be achieved using bacterial production systems such as those based on Azotobacter vinelandii, a free-living, non-pathogenic bacterium. In this mini-review, we analyze the latest advances in the regulation of alginate synthesis in this model.
Collapse
Affiliation(s)
- Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carlos Leonel Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel Castañeda,
| |
Collapse
|
2
|
Monteagudo-Cascales E, Santero E, Canosa I. The Regulatory Hierarchy Following Signal Integration by the CbrAB Two-Component System: Diversity of Responses and Functions. Genes (Basel) 2022; 13:genes13020375. [PMID: 35205417 PMCID: PMC8871633 DOI: 10.3390/genes13020375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
CbrAB is a two-component system, unique to bacteria of the family Pseudomonaceae, capable of integrating signals and involved in a multitude of physiological processes that allow bacterial adaptation to a wide variety of varying environmental conditions. This regulatory system provides a great metabolic versatility that results in excellent adaptability and metabolic optimization. The two-component system (TCS) CbrA-CbrB is on top of a hierarchical regulatory cascade and interacts with other regulatory systems at different levels, resulting in a robust output. Among the regulatory systems found at the same or lower levels of CbrAB are the NtrBC nitrogen availability adaptation system, the Crc/Hfq carbon catabolite repression cascade in Pseudomonas, or interactions with the GacSA TCS or alternative sigma ECF factor, such as SigX. The interplay between regulatory mechanisms controls a number of physiological processes that intervene in important aspects of bacterial adaptation and survival. These include the hierarchy in the use of carbon sources, virulence or resistance to antibiotics, stress response or definition of the bacterial lifestyle. The multiple actions of the CbrAB TCS result in an important competitive advantage.
Collapse
Affiliation(s)
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
| | - Inés Canosa
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
- Correspondence: ; Tel.: +34-954349052
| |
Collapse
|
3
|
Yu C, Yang F, Xue D, Wang X, Chen H. The Regulatory Functions of σ 54 Factor in Phytopathogenic Bacteria. Int J Mol Sci 2021; 22:ijms222312692. [PMID: 34884502 PMCID: PMC8657755 DOI: 10.3390/ijms222312692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
σ54 factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional genes in an enhancer-binding protein (EBP)-dependent manner. σ54 has two conserved functional domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN10GC, at the −24/−12 position relative to the transcription start site of target genes. In general, bacteria contain one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria. However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic bacteria, which cause economically important crop diseases and pose a serious threat to world food security. In this review, we summarize the current knowledge on the regulatory function of RpoN, including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory network of RpoN in bacteria.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Dingrong Xue
- National Engineering Laboratory of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China;
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
- Correspondence:
| |
Collapse
|
4
|
Sivakumar R, Gunasekaran P, Rajendhran J. Inactivation of CbrAB two-component system hampers root colonization in rhizospheric strain of Pseudomonas aeruginosa PGPR2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194763. [PMID: 34530138 DOI: 10.1016/j.bbagrm.2021.194763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCS) are one of the signal transduction mechanisms, which sense physiological/biological restraints and respond to changing environmental conditions by regulating the gene expression. Previously, by employing a forward genetic screen (INSeq), we identified that cbrA gene is essential for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. Here, we report the functional characterization of cbrAB TCS in PGPR2 during root colonization. We constructed insertion mutants in cbrA and its cognate response regulator cbrB. Genetic characterization revealed drastic down-regultion of sRNA crcZ gene in both mutant strains which play a critical role in carbon catabolite repression (CCR). The mutant strains displayed 10-fold decreased root colonization efficiency when compared to the wild-type strain. On the other hand, mutant strains formed higher biofilm on the abiotic surface, and the expression of pelB and pslA genes involved in biofilm matrix formation was up-regulated. In contrast, the expression of algD, responsible for alginate production, and its associated sigma factor algU was significantly down-regulated in mutant strains. We further analyzed the transcript levels of rsmA, controlled by the algU sigma factor, and found that the expression of rsmA was hampered in both mutants. The ability of mutant strains to swim and swarm was significantly hindered. Also, the expression of genes associated with type III secretion system (T3SS) was dysregulated in mutant strains. Taken together, regulation of gene expression by CbrAB TCS is intricate, and we confirm its role beyond carbon and nitrogen assimilation.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
5
|
Sultan A, Jers C, Ganief TA, Shi L, Senissar M, Køhler JB, Macek B, Mijakovic I. Phosphoproteome Study of Escherichia coli Devoid of Ser/Thr Kinase YeaG During the Metabolic Shift From Glucose to Malate. Front Microbiol 2021; 12:657562. [PMID: 33889145 PMCID: PMC8055822 DOI: 10.3389/fmicb.2021.657562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Understanding phosphorylation-mediated regulation of metabolic enzymes, pathways, and cell phenotypes under metabolic shifts represents a major challenge. The kinases associated with most phosphorylation sites and the link between phosphorylation and enzyme activity remain unknown. In this study, we performed stable isotope labeling by amino acids in cell culture (SILAC)-based proteome and phosphoproteome analysis of Escherichia coli ΔyeaG, a strain lacking a poorly characterized serine/threonine kinase YeaG, to decipher kinase-substrate interactions and the effects on metabolic phenotype during shifts from glucose to malate. The starting point of our analysis was the identification of physiological conditions under which ΔyeaG exhibits a clear phenotype. By metabolic profiling, we discovered that ΔyeaG strain has a significantly shorter lag phase than the wild type during metabolic shift from glucose to malate. Under those conditions, our SILAC analysis revealed several proteins that were differentially phosphorylated in the ΔyeaG strain. By focusing on metabolic enzymes potentially involved in central carbon metabolism, we narrowed down our search for putative YeaG substrates and identified isocitrate lyase AceA as the direct substrate of YeaG. YeaG was capable of phosphorylating AceA in vitro only in the presence of malate, suggesting that this phosphorylation event is indeed relevant for glucose to malate shift. There is currently not enough evidence to firmly establish the exact mechanism of this newly observed regulatory phenomenon. However, our study clearly exemplifies the usefulness of SILAC-based approaches in identifying proteins kinase substrates, when applied in physiological conditions relevant for the activity of the protein kinase in question.
Collapse
Affiliation(s)
- Abida Sultan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tariq A Ganief
- Quantitative Proteomics and Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Meriem Senissar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julie Bonne Køhler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Boris Macek
- Quantitative Proteomics and Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
7
|
Velázquez-Sánchez C, Espín G, Peña C, Segura D. The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production. Front Bioeng Biotechnol 2020; 8:386. [PMID: 32426348 PMCID: PMC7204398 DOI: 10.3389/fbioe.2020.00386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.
Collapse
Affiliation(s)
- Claudia Velázquez-Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Peña
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Mærk M, Jakobsen ØM, Sletta H, Klinkenberg G, Tøndervik A, Ellingsen TE, Valla S, Ertesvåg H. Identification of Regulatory Genes and Metabolic Processes Important for Alginate Biosynthesis in Azotobacter vinelandii by Screening of a Transposon Insertion Mutant Library. Front Bioeng Biotechnol 2020; 7:475. [PMID: 32010681 PMCID: PMC6979010 DOI: 10.3389/fbioe.2019.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Azotobacter vinelandii produces the biopolymer alginate, which has a wide range of industrial and pharmaceutical applications. A random transposon insertion mutant library was constructed from A. vinelandii ATCC12518Tc in order to identify genes and pathways affecting alginate biosynthesis, and about 4,000 mutant strains were screened for altered alginate production. One mutant, containing a mucA disruption, displayed an elevated alginate production level, and several mutants with decreased or abolished alginate production were identified. The regulatory proteins AlgW and AmrZ seem to be required for alginate production in A. vinelandii, similarly to Pseudomonas aeruginosa. An algB mutation did however not affect alginate yield in A. vinelandii although its P. aeruginosa homolog is needed for full alginate production. Inactivation of the fructose phosphoenolpyruvate phosphotransferase system protein FruA resulted in a mutant that did not produce alginate when cultivated in media containing various carbon sources, indicating that this system could have a role in regulation of alginate biosynthesis. Furthermore, impaired or abolished alginate production was observed for strains with disruptions of genes involved in peptidoglycan biosynthesis/recycling and biosynthesis of purines, isoprenoids, TCA cycle intermediates, and various vitamins, suggesting that sufficient access to some of these compounds is important for alginate production. This hypothesis was verified by showing that addition of thiamine, succinate or a mixture of lysine, methionine and diaminopimelate increases alginate yield in the non-mutagenized strain. These results might be used in development of optimized alginate production media or in genetic engineering of A. vinelandii strains for alginate bioproduction.
Collapse
Affiliation(s)
- Mali Mærk
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | - Svein Valla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Study of the sRNA RsmY involved in the genetic regulation of the synthesis of alginate and alkyl resorcinols in Azotobacter vinelandii. Arch Microbiol 2019; 202:579-589. [DOI: 10.1007/s00203-019-01769-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
|
10
|
Monteagudo-Cascales E, García-Mauriño SM, Santero E, Canosa I. Unraveling the role of the CbrA histidine kinase in the signal transduction of the CbrAB two-component system in Pseudomonas putida. Sci Rep 2019; 9:9110. [PMID: 31235731 PMCID: PMC6591292 DOI: 10.1038/s41598-019-45554-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
The histidine kinase CbrA of the CbrAB two-component system of Pseudomonas putida is a key element to recognise the activating signal and mediate auto- and trans-phosphorylation of the response element CbrB. CbrA is encoded by the gene cbrA which is located downstream of a putative open reading frame we have named cbrX. We describe the role of the CbrX product in the expression of CbrA and show there is translational coupling of the genes. We also explore the role of the transmembrane (TM) and PAS domains of CbrA in the signal recognition. A ΔcbrXA mutant lacking its TM domains is uncoupled in its growth in histidine and citrate as carbon sources, but its overexpression restores the ability to grow in such carbon sources. In these conditions ΔTM-CbrA is able to respond to carbon availability, thus suggesting an intracellular nature for the signal sensed.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Seville, Spain
| | - Sofía M García-Mauriño
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Seville, Spain
| | - Eduardo Santero
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Seville, Spain
| | - Inés Canosa
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Seville, Spain.
| |
Collapse
|
11
|
Barroso R, García-Mauriño SM, Tomás-Gallardo L, Andújar E, Pérez-Alegre M, Santero E, Canosa I. The CbrB Regulon: Promoter dissection reveals novel insights into the CbrAB expression network in Pseudomonas putida. PLoS One 2018; 13:e0209191. [PMID: 30557364 PMCID: PMC6296734 DOI: 10.1371/journal.pone.0209191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 11/18/2022] Open
Abstract
CbrAB is a high ranked global regulatory system exclusive of the Pseudomonads that responds to carbon limiting conditions. It has become necessary to define the particular regulon of CbrB and discriminate it from the downstream cascades through other regulatory components. We have performed in vivo binding analysis of CbrB in P. putida and determined that it directly controls the expression of at least 61 genes; 20% involved in regulatory functions, including the previously identified CrcZ and CrcY small regulatory RNAs. The remaining are porines or transporters (20%), metabolic enzymes (16%), activities related to protein translation (5%) and orfs of uncharacterised function (38%). Amongst the later, we have selected the operon PP2810-13 to make an exhaustive analysis of the CbrB binding sequences, together with those of crcZ and crcY. We describe the implication of three independent non-palindromic subsites with a variable spacing in three different targets; CrcZ, CrcY and operon PP2810-13 in the CbrAB activation. CbrB is a quite peculiar σN-dependent activator since it is barely dependent on phosphorylation for transcriptional activation. With the depiction of the precise contacts of CbrB with the DNA, the analysis of the multimerisation status and its dependence on other factors such as RpoN o IHF, we propose a model of transcriptional activation.
Collapse
Affiliation(s)
- Rocío Barroso
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain
| | - Sofía M. García-Mauriño
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain
| | | | - Eloísa Andújar
- Genomics unit, CABIMER/ CSIC/ Universidad de Sevilla/ Universidad Pablo de Olavide/ Junta de Andalucía, Seville, Spain
| | - Mónica Pérez-Alegre
- Genomics unit, CABIMER/ CSIC/ Universidad de Sevilla/ Universidad Pablo de Olavide/ Junta de Andalucía, Seville, Spain
| | - Eduardo Santero
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain
| | - Inés Canosa
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain
- * E-mail:
| |
Collapse
|
12
|
Martínez-Valenzuela M, Guzmán J, Moreno S, Ahumada-Manuel CL, Espín G, Núñez C. Expression of the sRNAs CrcZ and CrcY modulate the strength of carbon catabolite repression under diazotrophic or non-diazotrophic growing conditions in Azotobacter vinelandii. PLoS One 2018; 13:e0208975. [PMID: 30543677 PMCID: PMC6292655 DOI: 10.1371/journal.pone.0208975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022] Open
Abstract
Azotobacter vinelandii is a nitrogen-fixing bacterium of the Pseudomonadaceae family that prefers the use of organic acids rather than carbohydrates. Thus, in a mixture of acetate-glucose, glucose is consumed only after acetate is exhausted. In a previous work, we investigated the molecular basis of this carbon catabolite repression (CCR) process under diazotrophic conditions. In the presence of acetate, Crc-Hfq inhibited translation of the gluP mRNA, encoding the glucose transporter in A. vinelandii. Herein, we investigated the regulation in the expression of the small non-coding RNAs (sRNAs) crcZ and crcY, which are known to antagonize the repressing activity of Hfq-Crc. Our results indicated higher expression levels of the sRNAs crcZ and crcY under low CCR conditions (i.e. glucose), in relation to the strong one (acetate one). In addition, we also explored the process of CCR in the presence of ammonium. Our results revealed that CCR also occurs under non-diazotrophic conditions as we detected a hierarchy in the utilization of the supplied carbon sources, which was consistent with the higher expression level of the crcZ/Y sRNAs during glucose catabolism. Analysis of the promoters driving transcription of crcZ and crcY confirmed that they were RpoN-dependent but we also detected a processed form of CrcZ (CrcZ*) in the RpoN-deficient strain derived from a cbrB-crcZ co-transcript. CrcZ* was functional and sufficient to allow the assimilation of acetate.
Collapse
Affiliation(s)
- Marcela Martínez-Valenzuela
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, México
| | - Josefina Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Carlos Leonel Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
13
|
Bedoya-Pérez LP, Muriel-Millán LF, Moreno S, Quiroz-Rocha E, Rivera-Gómez N, Espín G. The pyrophosphohydrolase RppH is involved in the control of RsmA/CsrA expression in Azotobacter vinelandii and Escherichia coli. Microbiol Res 2018; 214:91-100. [DOI: 10.1016/j.micres.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
|
14
|
Glucose uptake in Azotobacter vinelandii occurs through a GluP transporter that is under the control of the CbrA/CbrB and Hfq-Crc systems. Sci Rep 2017; 7:858. [PMID: 28404995 PMCID: PMC5429807 DOI: 10.1038/s41598-017-00980-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 12/03/2022] Open
Abstract
Azotobacter vinelandii, a strict aerobic, nitrogen fixing bacterium in the Pseudomonadaceae family, exhibits a preferential use of acetate over glucose as a carbon source. In this study, we show that GluP (Avin04150), annotated as an H+-coupled glucose-galactose symporter, is the glucose transporter in A. vinelandii. This protein, which is widely distributed in bacteria and archaea, is uncommon in Pseudomonas species. We found that expression of gluP was under catabolite repression control thorugh the CbrA/CbrB and Crc/Hfq regulatory systems, which were functionally conserved between A. vinelandii and Pseudomonas species. While the histidine kinase CbrA was essential for glucose utilization, over-expression of the Crc protein arrested cell growth when glucose was the sole carbon source. Crc and Hfq proteins from either A. vinelandii or P. putida could form a stable complex with an RNA A-rich Hfq-binding motif present in the leader region of gluP mRNA. Moreover, in P. putida, the gluP A-rich Hfq-binding motif was functional and promoted translational inhibition of a lacZ reporter gene. The fact that gluP is not widely distributed in the Pseudomonas genus but is under control of the CbrA/CbrB and Crc/Hfq systems demonstrates the relevance of these systems in regulating metabolism in the Pseudomonadaceae family.
Collapse
|