1
|
Chen Q, Lyu L, Xue H, Shah AM, Zhao ZK. Engineering a non-model yeast Rhodotorula mucilaginosa for terpenoids synthesis. Synth Syst Biotechnol 2024; 9:569-576. [PMID: 38690180 PMCID: PMC11058065 DOI: 10.1016/j.synbio.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Terpenoids have tremendous biological activities and are widely employed in food, healthcare and pharmaceutical industries. Using synthetic biology to product terpenoids from microbial cell factories presents a promising alternative route compared to conventional methods such as chemical synthesis or phytoextraction. The red yeast Rhodotorula mucilaginosa has been widely studied due to its natural production capacity of carotenoid and lipids, indicating a strong endogenous isoprene pathway with readily available metabolic intermediates. This study constructed several engineered strains of R. mucilaginosa with the aim of producing different terpenoids. Monoterpene α-terpineol was produced by expressing the α-terpineol synthase from Vitis vinifera. The titer of α-terpineol was further enhanced to 0.39 mg/L by overexpressing the endogenous rate-limiting gene of the MVA pathway. Overexpression of α-farnesene synthase from Malus domestica, in combination with MVA pathway rate-limiting gene resulted in significant increase in α-farnesene production, reaching a titer of 822 mg/L. The carotenoid degradation product β-ionone was produced at a titer of 0.87 mg/L by expressing the β-ionone synthase from Petunia hybrida. This study demonstrates the potential of R. mucilaginosa as a platform host for the direct biosynthesis of various terpenoids and provides insights for further development of such platforms.
Collapse
Affiliation(s)
- Qiongqiong Chen
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Haizhao Xue
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Aabid Manzoor Shah
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
He Q, Bai S, Chen C, Yang X, Li Z, Sun S, Qu X, Yang X, Pan J, Liu W, Hou C, Deng Y. A chromosome-scale genome provides new insights into the typical carotenoid biosynthesis in the important red yeast Rhodotorula glutinis QYH-2023 with anti-inflammatory effects. Int J Biol Macromol 2024; 269:132103. [PMID: 38719011 DOI: 10.1016/j.ijbiomac.2024.132103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Rhodotorula spp. has been studied as one powerful source for a novel cell factory with fast growth and its high added-value biomolecules. However, its inadequate genome and genomic annotation have hindered its widespread use in cosmetics and food industries. Rhodotorula glutinis QYH-2023, was isolated from rice rhizosphere soil, and the highest quality of the genome of the strain was obtained at chromosome level (18 chromosomes) than ever before in red yeast in this study. Comparative genomics analysis revealed that there are more key gene copies of carotenoids biosynthesis in R. glutinis QYH-2023 than other species of Rhodotorula spp. Integrated transcriptome and metabolome analysis revealed that lipids and carotenoids biosynthesis was significantly enriched during fermentation. Subsequent investigation revealed that the over-expression of the strain three genes related to carotenoids biosynthesis in Komagataella phaffii significantly promoted the carotenoid production. Furthermore, in vitro tests initially confirmed that the longer the fermentation period, the synthesized metabolites controlled by R. glutinis QYH-2023 genome had the stronger anti-inflammatory properties. All of the findings revealed a high-quality reference genome which highlight the potential of R. glutinis strains to be employed as chassis cells for biosynthesizing carotenoids and other active chemicals.
Collapse
Affiliation(s)
- Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shasha Bai
- Beijing Institute of Nutritional Resources Co., LTD, Beijing Academy of Science and Technology, Beijing 100069, PR China; Department of Biomedical Sciences, Beijing city university, Beijing 100083, PR China
| | - Chenxiao Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Zhimin Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Shitao Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiaoxin Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Jiangpeng Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Wei Liu
- Hangzhou Base Array Biotechnology Co., Ltd., Hangzhou 310000, PR China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
3
|
Georgescu AM, Corbu VM, Csutak O. Molecular Basis of Yeasts Antimicrobial Activity-Developing Innovative Strategies for Biomedicine and Biocontrol. Curr Issues Mol Biol 2024; 46:4721-4750. [PMID: 38785553 PMCID: PMC11119588 DOI: 10.3390/cimb46050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
In the context of the growing concern regarding the appearance and spread of emerging pathogens with high resistance to chemically synthetized biocides, the development of new agents for crops and human protection has become an emergency. In this context, the yeasts present a huge potential as eco-friendly agents due to their widespread nature in various habitats and to their wide range of antagonistic mechanisms. The present review focuses on some of the major yeast antimicrobial mechanisms, their molecular basis and practical applications in biocontrol and biomedicine. The synthesis of killer toxins, encoded by dsRNA virus-like particles, dsDNA plasmids or chromosomal genes, is encountered in a wide range of yeast species from nature and industry and can affect the development of phytopathogenic fungi and other yeast strains, as well as human pathogenic bacteria. The group of the "red yeasts" is gaining more interest over the last years, not only as natural producers of carotenoids and rhodotorulic acid with active role in cell protection against the oxidative stress, but also due to their ability to inhibit the growth of pathogenic yeasts, fungi and bacteria using these compounds and the mechanism of competition for nutritive substrate. Finally, the biosurfactants produced by yeasts characterized by high stability, specificity and biodegrability have proven abilities to inhibit phytopathogenic fungi growth and mycelia formation and to act as efficient antibacterial and antibiofilm formation agents for biomedicine. In conclusion, the antimicrobial activity of yeasts represents a direction of research with numerous possibilities of bioeconomic valorization as innovative strategies to combat pathogenic microorganisms.
Collapse
Affiliation(s)
- Ana-Maria Georgescu
- Department of Genetics, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101 Bucharest, Romania; (A.-M.G.); (V.M.C.)
| | - Viorica Maria Corbu
- Department of Genetics, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101 Bucharest, Romania; (A.-M.G.); (V.M.C.)
- Research Institute of University of Bucharest (ICUB), University of Bucharest, B.P. Hasdeu Street 7, 050568 Bucharest, Romania
| | - Ortansa Csutak
- Department of Genetics, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101 Bucharest, Romania; (A.-M.G.); (V.M.C.)
- Research Institute of University of Bucharest (ICUB), University of Bucharest, B.P. Hasdeu Street 7, 050568 Bucharest, Romania
| |
Collapse
|
4
|
Pan C, Yin J, Ma B, Wen J, Luo P. Whole-genome sequence and characterization of a marine red yeast, Rhodosporidium sphaerocarpum GDMCC 60679, featuring the assimilation of ammonia nitrogen. J Biosci Bioeng 2024; 137:85-93. [PMID: 38155026 DOI: 10.1016/j.jbiosc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
A marine red yeast, Rhodosporidium sphaerocarpum, is generally used for the production of lipids and carotenoids. In a previous study, we demonstrated that a marine-derived R. sphaerocarpum GDMCC 60679 can efficiently remove ammonia nitrogen and exhibit multiple probiotic functions for shrimp, Litopenaeus vannamei. Here, we performed a genome assembly of the strain GDMCC 60679 using a combination of the data from Illumina PE and PacBio CLR reads. The genome has a size of 18.03 Mb and consists of 32 contigs with an N50 length of 1,074,774 bp and GC content of 63 %. The genome was predicted to contain 6092 protein-coding genes, 5962 of which were functionally annotated. Metabolic pathways responsible for the ammonia assimilation and the synthesis of lipids and carotenoids were particularly examined to explore and characterize genes contributing to these functions. Whole-genome sequence and annotation of the strain lays a foundation to reveal the molecular mechanism of its prominent biological functions and will facilitate us to further expand new applications of yeasts in Rhodosporidium.
Collapse
Affiliation(s)
- Chuanhao Pan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiayue Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wen
- Department of Biology, Lingnan Normal University, Zhanjiang 524048, China
| | - Peng Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
5
|
Impairment of carotenoid biosynthesis through CAR1 gene mutation results in CoQ 10, sterols, and phytoene accumulation in Rhodotorula mucilaginosa. Appl Microbiol Biotechnol 2021; 106:317-327. [PMID: 34910239 DOI: 10.1007/s00253-021-11673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Red yeasts, mainly included in the genera Rhodotorula, Rhodosporidiobolus, and Sporobolomyces, are renowned biocatalysts for the production of a wide range of secondary metabolites of commercial interest, among which lipids, carotenoids, and other isoprenoids. The production of all these compounds is tightly interrelated as they share acetyl-CoA and the mevalonate pathway as common intermediates. Here, T-DNA insertional mutagenesis was applied to the wild type strain C2.5t1 of Rhodotorula mucilaginosa for the isolation of albino mutants with impaired carotenoids biosynthesis. The rationale behind this approach was that a blockage in carotenoid biosynthetic pathway could divert carbon flux toward the production of lipids and/or other molecules deriving from terpenoid precursors. One characterized albino mutant, namely, strain W4, carries a T-DNA insertion in the CAR1 gene coding for phytoene desaturase. When cultured in glycerol-containing medium, W4 strain showed significant decreases in cell density and fatty acids content in respect to the wild type strain. Conversely, it reached significantly higher productions of phytoene, CoQ10, and sterols. These were supported by an increased expression of CAR2 gene that codes for phytoene synthase/lycopene cyclase. Thus, in accordance with the starting hypothesis, the impairment of carotenoids biosynthesis can be explored to pursue the biotechnological exploitation of red yeasts for enhanced production of secondary metabolites with several commercial applications. KEY POINTS: • The production of lipids, carotenoids, and other isoprenoids is tightly interrelated. • CAR1 gene mutation results in the overproduction of phytoene, CoQ10, and sterols. • Albino mutants are promising tools for the production of secondary metabolites.
Collapse
|
6
|
Kostovová I, Byrtusová D, Rapta M, Babák V, Márová I. The variability of carotenoid pigments and fatty acids produced by some yeasts within Sporidiobolales and Cystofilobasidiales. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01567-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
8
|
Exploring the Biodiversity of Red Yeasts for In Vitro and In Vivo Phenotypes Relevant to Agri-Food-Related Processes. FERMENTATION 2020. [DOI: 10.3390/fermentation7010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Red yeasts grow on food wastes, show antagonistic activity against food-spoilage microorganisms, produce food supplements, and may be utilized as feed-supplements themselves to positively modulate the quali-quantitative composition of intestinal microbiota. Therefore, they show a variety of possible biotechnological applications in agri-food-related processes. Here, to further explore the biotechnological potential of red yeasts, eleven strains ascribed to different species of the genera Rhodotorula and Sporobolomyces, differing for biomass and carotenoids production, were characterized in vitro for biofilm formation, invasive growth, and growth at the temperature range of 20–40 °C and in vivo for their antagonistic activity against the fungal pathogen and patulin producer Penicillium expansum. Most of them formed cellular MAT and showed invasive growth as well as adhesion to plastic materials. Four strains determined a significant reduction of fruit decay caused by P. expansum on apple fruit while the remaining seven showed different degrees of biocontrol activity. Finally, none of them grew at body temperature (>37 °C). Statistical analyses of both qualitative and quantitative phenotypic data, including biomass and carotenoids production, gathered further information on the most interesting strains for the biotechnological exploitation of red yeasts in agri-food-related process.
Collapse
|
9
|
González J, Romero-Aguilar L, Matus-Ortega G, Pablo Pardo J, Flores-Alanis A, Segal-Kischinevzky C. Levaduras adaptadas al frío: el tesoro biotecnológico de la Antártica. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Las levaduras son organismos microscópicos que están distribuidos en toda la Tierra, de modo que algunas han adaptado su metabolismo para proliferar en ambientes extremos. Las levaduras que habitan en la Antártica son un grupo de microorganismos adaptados al frío que han sido poco estudiadas. En esta revisión se describen algunas de las adaptaciones metabólicas que les permiten habitar en ambientes extremos, por ejemplo, el de la Antártica. También se abordan las consideraciones relevantes para saber si una levadura es extremófila, así como los criterios utilizados para clasificar a las levaduras por crecimiento y temperatura. Además, se explica el papel de las vías de biosíntesis de carotenoides y lípidos que están involucradas en contrarrestar a las especies reactivas de oxígeno generadas por estrés oxidante en levaduras pigmentadas y oleaginosas del género Rhodotorula. La revisión también considera aspectos de investigación básica y la importancia de las levaduras oleaginosas de la Antártica para el desarrollo de algunas aplicaciones biotecnológicas.
Collapse
|
10
|
Li M, Xia Q, Zhang H, Zhang R, Yang J. Metabolic Engineering of Different Microbial Hosts for Lycopene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14104-14122. [PMID: 33207118 DOI: 10.1021/acs.jafc.0c06020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a result of the extensive use of lycopene in a variety of fields, especially the dietary supplement and health food industries, the production of lycopene has attracted considerable interest. Lycopene can be obtained through extraction from vegetables and chemical synthesis. Alternatively, the microbial production of lycopene has been extensively researched in recent years. Various types of microbial hosts have been evaluated for their potential to accumulate a high level of lycopene. Metabolic engineering of the hosts and optimization of culture conditions are performed to enhance lycopene production. After years of research, great progress has been made in lycopene production. In this review, strategies used to improve lycopene production in different microbial hosts and the advantages and disadvantages of each microbial host are summarized. In addition, future perspectives of lycopene production in different microbial hosts are discussed.
Collapse
Affiliation(s)
- Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| | - Qingqing Xia
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| | - Haibo Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 135 Songling Road, Qingdao, Shandong 266101, People's Republic of China
| | - Rubing Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 135 Songling Road, Qingdao, Shandong 266101, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changchen Road, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
11
|
Sun Z, Lv J, Ji C, Liang H, Li S, Yang Z, Xu W, Zhang S, Lin X. Analysis of carotenoid profile changes and carotenogenic genes transcript levels in Rhodosporidium toruloides mutants from an optimized Agrobacterium tumefaciens-mediated transformation method. Biotechnol Appl Biochem 2020; 68:71-81. [PMID: 32017256 DOI: 10.1002/bab.1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/30/2020] [Indexed: 11/09/2022]
Abstract
Rhodosporidium toruloides has been reported as a potential biotechnological microorganism to produce carotenoids. The most commonly used molecular and genetic manipulation methods based on Agrobacterium-mediated transformation (ATMT). However, this method was of relatively lower transformation efficiency. In this study, we optimized the ATMT method for R. toruloides on account of the promoter on T-DNA, the ratio of A. tumefaciens to R. toruloides NP11, acetosyringone concentration, cocultivation temperature and time, and a transformation efficiency of 2,369 cells per 105 recipient cells was obtained and was 24 times as that of the previous report. With this optimized method, four redder mutants and four yellower mutants were selected out with torularhodin and β-carotene production preference, respectively. The highest torularhodin production was 1,638.15 µg/g dry cell weight in A1-13. The yellower mutants were found to divert the metabolic flux from torularhodin and torulene to γ-carotene and β-carotene, and the proportion of γ-carotene and β-carotene were all over 92%. TAIL-PCR was carried out to found T-DNA insertion in these mutants, and insertion hotspot was found. RT-qPCR results showed that CTA1 genes in these mutants were closely related to the synthesis of total carotenoids, especially torularhodin, and was a potenial metabolic engineering site in the future.
Collapse
Affiliation(s)
- Zeping Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Jing Lv
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Huipeng Liang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Shengjie Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Zhaoxia Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Wenhuan Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| |
Collapse
|
12
|
Mapelli-Brahm P, Barba FJ, Remize F, Garcia C, Fessard A, Mousavi Khaneghah A, Sant'Ana AS, Lorenzo JM, Montesano D, Meléndez-Martínez AJ. The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Kaplan RC, Wang Z, Usyk M, Sotres-Alvarez D, Daviglus ML, Schneiderman N, Talavera GA, Gellman MD, Thyagarajan B, Moon JY, Vázquez-Baeza Y, McDonald D, Williams-Nguyen JS, Wu MC, North KE, Shaffer J, Sollecito CC, Qi Q, Isasi CR, Wang T, Knight R, Burk RD. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity. Genome Biol 2019; 20:219. [PMID: 31672155 PMCID: PMC6824043 DOI: 10.1186/s13059-019-1831-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hispanics living in the USA may have unrecognized potential birthplace and lifestyle influences on the gut microbiome. We report a cross-sectional analysis of 1674 participants from four centers of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), aged 18 to 74 years old at recruitment. RESULTS Amplicon sequencing of 16S rRNA gene V4 and fungal ITS1 fragments from self-collected stool samples indicate that the host microbiome is determined by sociodemographic and migration-related variables. Those who relocate from Latin America to the USA at an early age have reductions in Prevotella to Bacteroides ratios that persist across the life course. Shannon index of alpha diversity in fungi and bacteria is low in those who relocate to the USA in early life. In contrast, those who relocate to the USA during adulthood, over 45 years old, have high bacterial and fungal diversity and high Prevotella to Bacteroides ratios, compared to USA-born and childhood arrivals. Low bacterial diversity is associated in turn with obesity. Contrasting with prior studies, our study of the Latino population shows increasing Prevotella to Bacteroides ratio with greater obesity. Taxa within Acidaminococcus, Megasphaera, Ruminococcaceae, Coriobacteriaceae, Clostridiales, Christensenellaceae, YS2 (Cyanobacteria), and Victivallaceae are significantly associated with both obesity and earlier exposure to the USA, while Oscillospira and Anaerotruncus show paradoxical associations with both obesity and late-life introduction to the USA. CONCLUSIONS Our analysis of the gut microbiome of Latinos demonstrates unique features that might be responsible for health disparities affecting Hispanics living in the USA.
Collapse
Affiliation(s)
- Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Daniela Sotres-Alvarez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago College of Medicine, Chicago, IL USA
| | | | - Gregory A. Talavera
- Division of Health Promotion and Behavioral Science, San Diego State University, San Diego, CA USA
| | - Marc D. Gellman
- Department of Psychology, University of Miami, Miami, FL USA
| | - Bharat Thyagarajan
- Division of Molecular Pathology and Genomics, University of Minnesota, Minneapolis, MN USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Yoshiki Vázquez-Baeza
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | - Michael C. Wu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Justin Shaffer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Carmen R. Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
14
|
Landolfo S, Chessa R, Zara G, Zara S, Budroni M, Mannazzu I. Rhodotorula mucilaginosa C2.5t1 Modulates Carotenoid Content and CAR Genes Transcript Levels to Counteract the Pro-Oxidant Effect of Hydrogen Peroxide. Microorganisms 2019; 7:E316. [PMID: 31487889 PMCID: PMC6780508 DOI: 10.3390/microorganisms7090316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
In order to contribute to the elucidation of the biological role of carotenoids, the cellular response to hydrogen peroxide was analyzed in the red yeast R. mucilaginosa. For that, the wild strain C2.5t1, that produces β-carotene, torulene, and torularhodin, and the albino mutant 200A6 that is incapable of producing detectable amounts of these carotenoids, were grown in the presence of increasing concentrations of hydrogen peroxide. In spite of the difference in carotenoid content, the two strains presented comparable resistance to the pro-oxidant that showed a minimum inhibitory concentration of 6 mM. When subject to 1 h treatment with 16 mM hydrogen peroxide the two strains increased catalase but not superoxide activity, suggesting that catalase plays a major role in cell protection in both the wild strain and the albino mutant. Moreover, C2.5t1 reduced its carotenoid content by about 40% upon hydrogen peroxide treatment. This reduction in carotenoids was in agreement with a significant decrease of the transcript levels of genes involved in carotenoid biosynthesis. Since an excess of β-carotene may enhance reactive oxygen species toxicity, these results suggest that C2.5t1 modulates carotenoid content to counteract the pro-oxidant effect of hydrogen peroxide.
Collapse
Affiliation(s)
- Sara Landolfo
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Rossella Chessa
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Severino Zara
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Marilena Budroni
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy.
| |
Collapse
|
15
|
Liu Z, Xie J, Wang H, Zhong X, Li H, Yu J, Kang J. Identification and expression profiling analysis of NBS-LRR genes involved in Fusarium oxysporum f.sp. conglutinans resistance in cabbage. 3 Biotech 2019; 9:202. [PMID: 31065502 PMCID: PMC6500516 DOI: 10.1007/s13205-019-1714-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022] Open
Abstract
As one of the most important resistance (R) gene families in plants, the NBS-LRR genes, encoding proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains, play significant roles in resisting pathogens. The published genomic data for cabbage (Brassica oleracea L.) provide valuable data to identify and characterize the genomic organization of cabbage NBS-LRR genes. Ultimately, we identified 105 TIR (N-terminal Toll/interleukin-1 receptor)-NBS-LRR (TNL) genes and 33 CC (coiled-coil)-NBS-LRR (CNL) genes. Further research indicated that 50.7% of the 138 NBS-LRR genes exist in 27 clusters and there are large differences among the gene structures and protein characteristics. Conserved motif and phylogenetic analysis showed that the structures of TNLs and CNLs were similar, with some differences. These NBS-LRRs are evolved under negative selection and mostly arose from whole-genome duplication events during evolution. Tissue-expression profiling of NBS-LRR genes revealed that 37.1% of the TNL genes are highly or specifically expressed in roots, especially the genes on chromosome 7 (76.5%). Digital gene expression and reverse transcription PCR analyses revealed the expression patterns of the NBS-LRR genes upon challenge by Fusarium oxysporum f.sp. conglutinans: nine genes were upregulated, and five were downregulated. The major resistance gene Foc1 probably works together with the other four genes in the same cluster to resist F. oxysporum infection.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070 People’s Republic of China
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070 People’s Republic of China
| | - Huiping Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| | - Xionghui Zhong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| | - Hailong Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070 People’s Republic of China
| | - Jungen Kang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| |
Collapse
|
16
|
Abstract
Microbial production of biofuels and bioproducts offers a sustainable and economic alternative to petroleum-based fuels and chemicals. The basidiomycete yeast Rhodosporidium toruloides is a promising platform organism for generating bioproducts due to its ability to consume a broad spectrum of carbon sources (including those derived from lignocellulosic biomass) and to naturally accumulate high levels of lipids and carotenoids, two biosynthetic pathways that can be leveraged to produce a wide range of bioproducts. While R. toruloides has great potential, it has a more limited set of tools for genetic engineering relative to more advanced yeast platform organisms such as Yarrowia lipolytica and Saccharomyces cerevisiae Significant advancements in the past few years have bolstered R. toruloides' engineering capacity. Here we expand this capacity by demonstrating the first use of CRISPR-Cas9-based gene disruption in R. toruloides Transforming a Cas9 expression cassette harboring nourseothricin resistance and selecting transformants on this antibiotic resulted in strains of R. toruloides exhibiting successful targeted disruption of the native URA3 gene. While editing efficiencies were initially low (0.002%), optimization of the cassette increased efficiencies 364-fold (to 0.6%). Applying these optimized design conditions enabled disruption of another native gene involved in carotenoid biosynthesis, CAR2, with much greater success; editing efficiencies of CAR2 deletion reached roughly 50%. Finally, we demonstrated efficient multiplexed genome editing by disrupting both CAR2 and URA3 in a single transformation. Together, our results provide a framework for applying CRISPR-Cas9 to R. toruloides that will facilitate rapid and high-throughput genome engineering in this industrially relevant organism.IMPORTANCE Microbial biofuel and bioproduct platforms provide access to clean and renewable carbon sources that are more sustainable and environmentally friendly than petroleum-based carbon sources. Furthermore, they can serve as useful conduits for the synthesis of advanced molecules that are difficult to produce through strictly chemical means. R. toruloides has emerged as a promising potential host for converting renewable lignocellulosic material into valuable fuels and chemicals. However, engineering efforts to improve the yeast's production capabilities have been impeded by a lack of advanced tools for genome engineering. While this is rapidly changing, one key tool remains unexplored in R. toruloides: CRISPR-Cas9. The results outlined here demonstrate for the first time how effective multiplexed CRISPR-Cas9 gene disruption provides a framework for other researchers to utilize this revolutionary genome-editing tool effectively in R. toruloides.
Collapse
|
17
|
Bao R, Gao N, Lv J, Ji C, Liang H, Li S, Yu C, Wang Z, Lin X. Enhancement of Torularhodin Production in Rhodosporidium toruloides by Agrobacterium tumefaciens-Mediated Transformation and Culture Condition Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1156-1164. [PMID: 30607946 DOI: 10.1021/acs.jafc.8b04667] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nine transformants of Rhodosporidium toruloides with significant changes in the carotenoid profile were obtained by Agrobacterium tumefaciens-mediated transformation, including a white, three red, and four yellow mutants. A red mutant A1-15-BRQ that showed a high torularhodin production was selected for culture condition optimization. Results indicated that the torularhodin yield was boosted with glucose as the carbon source, at a carbon/nitrogen ratio of 22, a loading volume of 75 mL, and 28 °C. The torularhodin yield of 21.3 mg/L consisting of 94.4% total carotenoids was obtained by Box-Behnken design experiments. The torularhodin yield was 17.0-fold higher than that of the wild type, with time shortened from 9 to 3 days. This study reports an effective strategy for improving torularhodin production and provides a candidate R. toruloides strain for highly selective production of torularhodin.
Collapse
Affiliation(s)
- Ruiqi Bao
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Ning Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian , Liaoning 116023 , People's Republic of China
| | - Jing Lv
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Chaofan Ji
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Huipeng Liang
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Shengjie Li
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Xinping Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| |
Collapse
|
18
|
Camiolo S, Toome-Heller M, Aime MC, Haridas S, Grigoriev IV, Porceddu A, Mannazzu I. An analysis of codon bias in six red yeast species. Yeast 2018; 36:53-64. [PMID: 30264407 DOI: 10.1002/yea.3359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 11/11/2022] Open
Abstract
Red yeasts, primarily species of Rhodotorula, Sporobolomyces, and other genera of Pucciniomycotina, are traditionally considered proficient systems for lipid and terpene production, and only recently have also gained consideration for the production of a wider range of molecules of biotechnological potential. Improvements of transgene delivery protocols and regulated gene expression systems have been proposed, but a dearth of information on compositional and/or structural features of genes has prevented transgene sequence optimization efforts for high expression levels. Here, the codon compositional features of genes in six red yeast species were characterized, and the impact that evolutionary forces may have played in shaping this compositional bias was dissected by using several computational approaches. Results obtained are compatible with the hypothesis that mutational bias, although playing a significant role, cannot alone explain synonymous codon usage bias of genes. Nevertheless, several lines of evidences indicated a role for translational selection in driving the synonymous codons that allow high expression efficiency. These optimal synonymous codons are identified for each of the six species analyzed. Moreover, the presence of intragenic patterns of codon usage, which are thought to facilitate polyribosome formation, was highlighted. The information presented should be taken into consideration for transgene design for optimal expression in red yeast species.
Collapse
Affiliation(s)
- Salvatore Camiolo
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Merje Toome-Heller
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
19
|
Abstract
In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom; .,Current affiliation: Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London SW7 2AZ, United Kingdom; .,Institute for Integrative Biology of the Cell, 91190 Gif-sur-Yvette, France
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
20
|
Kot AM, Błażejak S, Gientka I, Kieliszek M, Bryś J. Torulene and torularhodin: "new" fungal carotenoids for industry? Microb Cell Fact 2018; 17:49. [PMID: 29587755 PMCID: PMC5870927 DOI: 10.1186/s12934-018-0893-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/17/2018] [Indexed: 03/11/2023] Open
Abstract
Torulene and torularhodin represent the group of carotenoids and are synthesized by yeasts and fungi. The most important producers of these two compounds include yeasts of Rhodotorula and Sporobolomyces genera. The first reports confirming the presence of torulene and torularhodin in the cells of microorganisms date to the 1930s and 1940s; however, only in the past few years, the number of works describing the properties of these compounds increased. These compounds have strong anti-oxidative and anti-microbial properties, and thus may be successfully used as food, feedstock, and cosmetics additives. In addition, tests performed on rats and mice showed that both torulene and torularhodin have anti-cancerous properties. In order to commercialize the production of these two carotenoids, it is necessary to obtain highly efficient yeast strains, for example, via mutagenization and optimization of cultivation conditions. Further studies on the activity of torulene and torularhodin on the human body are also needed.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Iwona Gientka
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Joanna Bryś
- Department of Chemistry, Faculty of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|