1
|
Pöhl S, Giacomelli G, Meyer FM, Kleeberg V, Cohen EJ, Biboy J, Rosum J, Glatter T, Vollmer W, van Teeseling MCF, Heider J, Bramkamp M, Thanbichler M. An outer membrane porin-lipoprotein complex modulates elongasome movement to establish cell curvature in Rhodospirillum rubrum. Nat Commun 2024; 15:7616. [PMID: 39223154 PMCID: PMC11369160 DOI: 10.1038/s41467-024-51790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Curved cell shapes are widespread among bacteria and important for cellular motility, virulence and fitness. However, the underlying morphogenetic mechanisms are still incompletely understood. Here, we identify an outer-membrane protein complex that promotes cell curvature in the photosynthetic species Rhodospirillum rubrum. We show that the R. rubrum porins Por39 and Por41 form a helical ribbon-like structure at the outer curve of the cell that recruits the peptidoglycan-binding lipoprotein PapS, with PapS inactivation, porin delocalization or disruption of the porin-PapS interface resulting in cell straightening. We further demonstrate that porin-PapS assemblies act as molecular cages that entrap the cell elongation machinery, thus biasing cell growth towards the outer curve. These findings reveal a mechanistically distinct morphogenetic module mediating bacterial cell shape. Moreover, they uncover an unprecedented role of outer-membrane protein patterning in the spatial control of intracellular processes, adding an important facet to the repertoire of regulatory mechanisms in bacterial cell biology.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, Germany
| | | | - Fabian M Meyer
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Volker Kleeberg
- Institut für Biologie II, University of Freiburg, Freiburg, Germany
- Pädagogische Forschungsstelle Kassel, Kassel, Germany
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany
| | - Johann Heider
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Marc Bramkamp
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
2
|
Cerrone F, Zhou B, Mouren A, Avérous L, Conroy S, Simpson JC, O'Connor KE, Narancic T. Pseudomonas umsongensis GO16 as a platform for the in vivo synthesis of short and medium chain length polyhydroxyalkanoate blends. BIORESOURCE TECHNOLOGY 2023; 387:129668. [PMID: 37572888 DOI: 10.1016/j.biortech.2023.129668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biological polyesters, viewed as a replacement for petrochemical plastic. However, they suffer from suboptimal physical and mechanical properties. Here, it was shown that a metabolically versatile Pseudomonas umsongensis GO16 can synthesise a blend of short chain length (scl) and medium chain length (mcl)-PHA. A defined mix of butyric (BA) and octanoic acid (OA) in different ratios was used. The PHA monomer composition varied depending on the feeding strategy. When OA and BA were fed at 80:20 ratio it showed 14, 8, 77 and 1 mol% of (R)-3-hydroxybutyrate, (R)-3-hydroxyhexanoate, (R)-3-hydroxyoctanoate and (R)-3-hydroxydecanoate respectively. The polymer characterisation clearly shows that polyhydroxybutyrate (PHB) and mcl-PHA are produced individually. The two polymers are blended on the PHA granule level, as demonstrated by fluorescence microscopy and yeast two-hybrid assay. The resulting blend has a specific viscoelasticity compared to PHB and PHO. Mcl-PHA acts as a plasticiser and reduces PHB brittleness.
Collapse
Affiliation(s)
- Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Agathe Mouren
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Stephen Conroy
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Science Centre West, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited. Appl Microbiol Biotechnol 2023; 107:1863-1874. [PMID: 36763117 PMCID: PMC10006253 DOI: 10.1007/s00253-023-12413-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Pseudomonas putida KT2440 is a well-known model organism for the medium-chain-length (mcl) polyhydroxyalkanoate (PHA) accumulation. (R)-Specific enoyl-coenzyme A hydratase (PhaJ) was considered to be the main supplier of monomers for PHA synthesis by converting the β-oxidation intermediate, trans-2-enoyl-CoA to (R)-3-hydroxyacyl-CoA when fatty acids (FA) are used. Three PhaJ homologues, PhaJ1, PhaJ4 and MaoC, are annotated in P. putida KT2440. To investigate the relationship of fatty acids-PHA metabolism and the role of each PhaJ in PHA biosynthesis in P. putida KT2440, a series of P. putida KT2440 knockouts was obtained. PHA content and monomer composition in wild type (WT) and mutants under different growth conditions were analysed. PhaJ4 was the main monomer supplier for PHA synthesis with FA as sole carbon and energy source, with preference towards C8 and C10 substrate, whereas PhaJ1 showed preference for the C6 substrate. However, when all three PhaJ homologues were deleted, the mutant still accumulated PHA up to 10.7% of the cell dry weight (CDW). The deletion of (R)-3-hydroxydecanoyl-ACP:CoA transacylase (PhaG), which connects de novo FA and PHA synthesis pathways, while causing a further 1.8-fold decrease in PHA content, did not abolish PHA accumulation. Further proteome analysis revealed quinoprotein alcohol dehydrogenases PedE and PedH as potential monomer suppliers, but when these were deleted, the PHA level remained at 2.2-14.8% CDW depending on the fatty acid used and whether nitrogen limitation was applied. Therefore, it is likely that some other non-specific dehydrogenases supply monomers for PHA synthesis, demonstrating the redundancy of PHA metabolism. KEY POINTS: • β-oxidation intermediates are converted to PHA monomers by hydratases PhaJ1, PhaJ4 and MaoC in Pseudomonas putida KT2440. • When these are deleted, the PHA level decreases, but it is not abolished. • PHA non-specific enzyme(s) also contributes to PHA metabolism in KT2440.
Collapse
|
4
|
Cavazza C, Collin-Faure V, Pérard J, Diemer H, Cianférani S, Rabilloud T, Darrouzet E. Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis. J Proteomics 2022; 250:104389. [PMID: 34601154 DOI: 10.1016/j.jprot.2021.104389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Some carboxydotrophs like Rhodospirillum rubrum are able to grow with CO as their sole source of energy using a Carbone monoxide dehydrogenase (CODH) and an Energy conserving hydrogenase (ECH) to perform anaerobically the so called water-gas shift reaction (WGSR) (CO + H2O → CO2 + H2). Several studies have focused at the biochemical and biophysical level on this enzymatic system and a few OMICS studies on CO metabolism. Knowing that CO is toxic in particular due to its binding to heme iron atoms, and is even considered as a potential antibacterial agent, we decided to use a proteomic approach in order to analyze R. rubrum adaptation in term of metabolism and management of the toxic effect. In particular, this study allowed highlighting a set of proteins likely implicated in ECH maturation, and important perturbations in term of cofactor biosynthesis, especially metallic cofactors. This shows that even this CO tolerant microorganism cannot avoid completely CO toxic effects associated with its interaction with metallic ions. SIGNIFICANCE: This proteomic study highlights the fact that even in a microorganism able to handle carbon monoxide and in some way detoxifying it via the intrinsic action of the carbon monoxide dehydrogenase (CODH), CO has important effects on metal homeostasis, metal cofactors and metalloproteins. These effects are direct or indirect via transcription regulation, and amplified by the high interdependency of cofactors biosynthesis.
Collapse
Affiliation(s)
- Christine Cavazza
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | | | - Julien Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 (CNRS-CEA), 67087 Strasbourg, France.
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 (CNRS-CEA), 67087 Strasbourg, France.
| | - Thierry Rabilloud
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France.
| | | |
Collapse
|
5
|
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 2021; 45:fuaa058. [PMID: 33118006 DOI: 10.1093/femsre/fuaa058] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
Collapse
Affiliation(s)
- Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Luis Paulo Silveira Alves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anna Maria Pirttilä
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
6
|
Bayon-Vicente G, Zarbo S, Deutschbauer A, Wattiez R, Leroy B. Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by Rhodospirillum rubrum. Appl Environ Microbiol 2020; 86:e00901-20. [PMID: 32651203 PMCID: PMC7480388 DOI: 10.1128/aem.00901-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Purple nonsulfur bacteria are increasingly recognized for industrial applications in bioplastics, pigment, and biomass production. In order to optimize the yield of future biotechnological processes, the assimilation of different carbon sources by Rhodospirillum rubrum has to be understood. As they are released from several fermentation processes, volatile fatty acids (VFAs) represent a promising carbon source in the development of circular industrial applications. To obtain an exhaustive characterization of the photoheterotrophic metabolism of R. rubrum in the presence of valerate, we combined phenotypic, proteomic, and genomic approaches. We obtained evidence that valerate is cleaved into acetyl coenzyme A (acetyl-CoA) and propionyl-CoA and depends on the presence of bicarbonate ions. Genomic and enzyme inhibition data showed that a functional methylmalonyl-CoA pathway is essential. Our proteomic data showed that the photoheterotrophic assimilation of valerate induces an intracellular redox stress which is accompanied by an increased abundance of phasins (the main proteins present in polyhydroxyalkanoate [PHA] granules). Finally, we observed a significant increase in the production of the copolymer P(HB-co-HV), accounting for a very high (>80%) percentage of HV monomer. Moreover, an increase in the PHA content was obtained when bicarbonate ions were progressively added to the medium. The experimental conditions used in this study suggest that the redox imbalance is responsible for PHA production. These findings also reinforce the idea that purple nonsulfur bacteria are suitable for PHA production through a strategy other than the well-known feast-and-famine process.IMPORTANCE The use and the littering of plastics represent major issues that humanity has to face. Polyhydroxyalkanoates (PHAs) are good candidates for the replacement of oil-based plastics, as they exhibit comparable physicochemical properties but are biobased and biodegradable. However, the current industrial production of PHAs is curbed by the production costs, which are mainly linked to the carbon source. Volatile fatty acids issued from the fermentation processes constitute interesting carbon sources, since they are inexpensive and readily available. Among them, valerate is gaining interest regarding the ability of many bacteria to produce a copolymer of PHAs. Here, we describe the photoheterotrophic assimilation of valerate by Rhodospirillum rubrum, a purple nonsulfur bacterium mainly known for its metabolic versatility. Using a knowledge-based optimization process, we present a new strategy for the improvement of PHA production, paving the way for the use of R. rubrum in industrial processes.
Collapse
Affiliation(s)
- Guillaume Bayon-Vicente
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sarah Zarbo
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
7
|
Tarazona NA, Hernández-Arriaga AM, Kniewel R, Prieto MA. Phasin interactome reveals the interplay of PhaF with the polyhydroxyalkanoate transcriptional regulatory protein PhaD in Pseudomonas putida. Environ Microbiol 2020; 22:3922-3936. [PMID: 32705785 PMCID: PMC7590123 DOI: 10.1111/1462-2920.15175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/12/2023]
Abstract
Phasin PhaF, a multifunctional protein associated with the surface of polyhydroxyalkanoate (PHA) granules that also interacts with the nucleoid, contributes significantly to PHA biogenesis in pseudomonads. As a protein present on the surface of PHA granules, PhaF participates in granule stabilization and segregation, whereas its deletion has a notable impact on overall transcriptome, PHA accumulation and cell physiology, suggesting more extensive functions besides solely being a granule structural protein. Here, we followed a systematic approach to detect potential interactions of PhaF with other components of the cell, which could pinpoint unexplored functions of PhaF in the regulation of PHA production. We determined the PhaF interactome in Pseudomonas putida KT2440 via pull‐down‐mass spectrometry (PD‐MS) experiments. PhaF complexed with PHA‐related proteins, phasin PhaI and the transcriptional regulator PhaD, interactions that were verified to be direct using in vivo two‐hybrid analysis. The determination of the PHA granule proteome showed that PhaI and three other potential PhaF interacting partners, but not PhaD, were granule‐associated proteins. Analysis of the interaction of PhaF and PhaD with the phaI promoter by EMSA suggested a new role for PhaF in interacting with PhaD and raises new questions on the regulatory system controlling pha gene expression.
Collapse
Affiliation(s)
- Natalia A Tarazona
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, 28040, Spain
| | - Ana M Hernández-Arriaga
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, 28040, Spain.,Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Spain
| | - Ryan Kniewel
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, 28040, Spain.,Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, 28040, Spain.,Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Spain
| |
Collapse
|
8
|
Kulakovskaya T, Zvonarev A, Laurinavichius K, Khokhlova G, Vainshtein M. Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum. Arch Microbiol 2019; 201:1307-1312. [PMID: 31273403 DOI: 10.1007/s00203-019-01697-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 12/27/2022]
Abstract
Inorganic polyphosphate is involved in metal homeostasis in microorganisms. The aim of the study was to reveal differences in polyphosphate metabolism of Rhodospirillum rubrum under autotrophic and heterotrophic cultivation in the presence of Fe (2.3 mg Fe3+ L-1) and without Fe (traces). Heterotrophic conditions without Fe resulted in cell lysis and low biomass yield. High polyphosphate content and low exopolyphosphatase activity were observed in the cells cultivated autotrophically in the presence of Fe. The cells grown heterotrophically in the presence of Fe contained more phosphate and low-molecular polyphosphate; on the contrary, the content of the high molecular polyphosphate decreased in parallel with the increase in exopolyphosphatase activity. The possible involvement of Pi and polyphosphate to the formation of Fe-containing inclusions is discussed.
Collapse
Affiliation(s)
- Tatiana Kulakovskaya
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290, Russia.
| | - Anton Zvonarev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290, Russia
| | - Kestutis Laurinavichius
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290, Russia
| | - Galina Khokhlova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290, Russia
| | - Mikhail Vainshtein
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290, Russia
| |
Collapse
|