1
|
Grimm L, Wijaya A, Askenasy I, Nazeer RR, Seki H, Brear PD, Figueroa W, Spring DR, Welch M. Pseudomonas aeruginosa PfpI is a methylglyoxalase. J Biol Chem 2025; 301:108374. [PMID: 40043953 PMCID: PMC11987610 DOI: 10.1016/j.jbc.2025.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, commonly associated with human airway infections. Based on its amino acid sequence similarity with Pyrococcus furiosus protease I, P. aeruginosa PfpI was originally annotated as an intracellular protease. In this work, we show that PfpI is a methylglyoxalase. The X-ray crystal structure of the purified protein was solved to 1.4 Å resolution. The structural data indicated that PfpI shares the same constellation of active site residues (including the catalytic Cys112 and His113) as those seen in a well-characterized bacterial methylglyoxalase from Escherichia coli, YhbO. Using NMR, we confirmed that PfpI qualitatively converted methylglyoxal into lactic acid. Quantitation of lactate produced by the methylglyoxalase activity of PfpI yielded a kcat of 102 min-1 and a KM of 369 μM. Mutation of Cys112 and His113 in PfpI led to complete loss of methylglyoxalase activity. To investigate the functional impact of PfpI in vivo, a ΔpfpI deletion mutant was made. Quantitative proteomic analyses revealed a pattern of changes consistent with perturbation of ribosomal function, Zn2+ limitation, C1 metabolism, and glutathione metabolism. These findings are consistent with PfpI being a glutathione-independent methylglyoxalase. Previously, transposon insertion (pfpI::Tn) mutants have been reported to exhibit phenotypes associated with antibiotic resistance, motility, and the response to oxidative stress. However, the ΔpfpI mutant generated in this study displayed none of these phenotypes. Whole-genome sequencing of the previously described pfpI::Tn mutants revealed that they also contain a variety of other genetic changes that likely account for their observed phenotypes.
Collapse
Affiliation(s)
- Larson Grimm
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Andre Wijaya
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Isabel Askenasy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Hikaru Seki
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Paul D Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Wendy Figueroa
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Cianciulli Sesso A, Resch A, Moll I, Bläsi U, Sonnleitner E. The FinO/ProQ-like protein PA2582 impacts antimicrobial resistance in Pseudomonas aeruginosa. Front Microbiol 2024; 15:1422742. [PMID: 39011145 PMCID: PMC11247311 DOI: 10.3389/fmicb.2024.1422742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Bacteria employ small regulatory RNAs (sRNA) and/or RNA binding proteins (RBPs) to respond to environmental cues. In Enterobacteriaceae, the FinO-domain containing RBP ProQ associates with numerous sRNAs and mRNAs, impacts sRNA-mediated riboregulation or mRNA stability by binding to 5'- or 3'-untranslated regions as well as to internal stem loop structures. Global RNA-protein interaction studies and sequence comparisons identified a ProQ-like homolog (PA2582/ProQ Pae ) in Pseudomonas aeruginosa (Pae). To address the function of ProQ Pae , at first a comparative transcriptome analysis of the Pae strains PAO1 and PAO1ΔproQ was performed. This study revealed more than 100 differentially abundant transcripts, affecting a variety of cellular functions. Among these transcripts were pprA and pprB, encoding the PprA/PprB two component system, psrA, encoding a transcriptional activator of pprB, and oprI, encoding the outer membrane protein OprI. RNA co-purification experiments with Strep-tagged Pae ProQ protein corroborated an association of ProQ Pae with these transcripts. In accordance with the up-regulation of the psrA, pprA, and pprB genes in strain PAO1ΔproQ a phenotypic analysis revealed an increased susceptibility toward the aminoglycosides tobramycin and gentamicin in biofilms. Conversely, the observed down-regulation of the oprI gene in PAO1ΔproQ could be reconciled with a decreased susceptibility toward the synthetic cationic antimicrobial peptide GW-Q6. Taken together, these studies revealed that ProQ Pae is an RBP that impacts antimicrobial resistance in Pae.
Collapse
Affiliation(s)
- Anastasia Cianciulli Sesso
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Metabolic Mechanism and Physiological Role of Glycerol 3-Phosphate in Pseudomonas aeruginosa PAO1. mBio 2022; 13:e0262422. [PMID: 36218368 PMCID: PMC9765544 DOI: 10.1128/mbio.02624-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that is lethal to cystic fibrosis (CF) patients. Glycerol generated during the degradation of phosphatidylcholine, the major lung surfactant in CF patients, could be utilized by P. aeruginosa. Previous studies have indicated that metabolism of glycerol by this bacterium contributes to its adaptation to and persistence in the CF lung environment. Here, we investigated the metabolic mechanisms of glycerol and its important metabolic intermediate glycerol 3-phosphate (G3P) in P. aeruginosa PAO1. We found that G3P homeostasis plays an important role in the growth and virulence factor production of P. aeruginosa PAO1. The G3P accumulation caused by the mutation of G3P dehydrogenase (GlpD) and exogenous glycerol led to impaired growth and reductions in pyocyanin synthesis, motilities, tolerance to oxidative stress, and resistance to kanamycin. Transcriptomic analysis indicates that the growth retardation caused by G3P stress is associated with reduced glycolysis and adenosine triphosphate (ATP) generation. Furthermore, two haloacid dehalogenase-like phosphatases (PA0562 and PA3172) that play roles in the dephosphorylation of G3P in strain PAO1 were identified, and their enzymatic properties were characterized. Our findings reveal the importance of G3P homeostasis and indicate that GlpD, the key enzyme for G3P catabolism, is a potential therapeutic target for the prevention and treatment of infections by this pathogen. IMPORTANCE In view of the intrinsic resistance of Pseudomonas aeruginosa to antibiotics and its potential to acquire resistance to current antibiotics, there is an urgent need to develop novel therapeutic options for the treatment of infections caused by this bacterium. Bacterial metabolic pathways have recently become a focus of interest as potential targets for the development of new antibiotics. In this study, we describe the mechanism of glycerol utilization in P. aeruginosa PAO1, which is an available carbon source in the lung environment. Our results reveal that the homeostasis of glycerol 3-phosphate (G3P), a pivotal intermediate in glycerol catabolism, is important for the growth and virulence factor production of P. aeruginosa PAO1. The mutation of G3P dehydrogenase (GlpD) and the addition of glycerol were found to reduce the tolerance of P. aeruginosa PAO1 to oxidative stress and to kanamycin. The findings highlight the importance of G3P homeostasis and suggest that GlpD is a potential drug target for the treatment of P. aeruginosa infections.
Collapse
|
4
|
Zhu T, Wang W, Wang H, Zhao Y, Qu D, Wu Y. Mutation of gdpS gene induces a viable but non-culturable state in Staphylococcus epidermidis and changes in the global transcriptional profile. BMC Microbiol 2022; 22:288. [PMID: 36457079 PMCID: PMC9714401 DOI: 10.1186/s12866-022-02708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In the genome of staphylococci, only the gdpS gene encodes the conserved GGDEF domain, which is the characteristic of diguanylate cyclases. In our previous study, we have demonstrated that the gdpS gene can modulate biofilm formation by positively regulating the expression of ica operon in Staphylococcus epidermidis. Moreover, this regulation seems to be independent of the c-di-GMP signaling pathway and the protein-coding function of this gene. Therefore, the biological function of the gdpS gene remains to be further investigated. RESULTS In the present study, it was observed that mutation of the gdpS gene induced S. epidermidis to enter into a presumed viable but nonculturable state (VBNC) after cryopreservation with glycerol. Similarly, when moved from liquid to solid culture medium, the gdpS mutant strain also exhibited a VBNC state. Compared with the wild-type strain, the gdpS mutant strain autolyzed more quickly during storage at 4℃, indicating its increased susceptibility to low temperature. Transcriptional profiling analysis showed that the gdpS mutation affected the transcription of 188 genes (92 genes were upregulated and 96 genes were downregulated). Specifically, genes responsible for glycerol metabolism were most markedly upregulated and most of the altered genes in the mutant strain are those involved in nitrogen metabolism. In addition, the most significantly downregulated genes included the betB gene, whose product catalyzes the synthesis of glycine betaine and confers tolerance to cold. CONCLUSION The preliminary results suggest that the gdpS gene may participate in VBNC formation of S. epidermidis in face of adverse environmental factors, which is probably achieved by regulating expression of energy metabolism genes. Besides, the gdpS gene is critical for S. epidermidis to survive low temperature, and the underlying mechanism may be partly explained by its influence on expression of betB gene.
Collapse
Affiliation(s)
- Tao Zhu
- grid.443626.10000 0004 1798 4069Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Wei Wang
- grid.443626.10000 0004 1798 4069Department of Pharmacy, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Han Wang
- grid.443626.10000 0004 1798 4069Department of Pharmacy, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Yanfeng Zhao
- grid.452511.6Department of Laboratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Di Qu
- grid.11841.3d0000 0004 0619 8943Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yang Wu
- grid.11841.3d0000 0004 0619 8943Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
5
|
Kim M, Lee J, Heo L, Lee SJ, Han SW. Proteomic and Phenotypic Analyses of a Putative Glycerol-3-Phosphate Dehydrogenase Required for Virulence in Acidovorax citrulli. THE PLANT PATHOLOGY JOURNAL 2021; 37:36-46. [PMID: 33551695 PMCID: PMC7847757 DOI: 10.5423/ppj.oa.12.2020.0221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 05/05/2023]
Abstract
Acidovorax citrulli (Ac) is the causal agent of bacterial fruit blotch (BFB) in watermelon, a disease that poses a serious threat to watermelon production. Because of the lack of resistant cultivars against BFB, virulence factors or mechanisms need to be elucidated to control the disease. Glycerol-3-phosphate dehydrogenase is the enzyme involved in glycerol production from glucose during glycolysis. In this study, we report the functions of a putative glycerol-3-phosphate dehydrogenase in Ac (GlpdAc) using comparative proteomic analysis and phenotypic observation. A glpdAc knockout mutant, AcΔglpdAc(EV), lost virulence against watermelon in two pathogenicity tests. The putative 3D structure and amino acid sequence of GlpdAc showed high similarity with glycerol-3-phosphate dehydrogenases from other bacteria. Comparative proteomic analysis revealed that many proteins related to various metabolic pathways, including carbohydrate metabolism, were affected by GlpdAc. Although AcΔglpdAc(EV) could not use glucose as a sole carbon source, it showed growth in the presence of glycerol, indicating that GlpdAc is involved in glycolysis. AcΔglpdAc(EV) also displayed higher cell-to-cell aggregation than the wild-type bacteria, and tolerance to osmotic stress and ciprofloxacin was reduced and enhanced in the mutant, respectively. These results indicate that GlpdAc is involved in glycerol metabolism and other mechanisms, including virulence, demonstrating that the protein has pleiotropic effects. Our study expands the understanding of the functions of proteins associated with virulence in Ac.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong 7546, Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 7546, Korea
| | - Lynn Heo
- Department of Plant Science and Technology, Chung-Ang University, Anseong 7546, Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
- Co-corresponding authors. S. J. Lee, Phone) +82-31-670-3356, FAX) +82-2-675-3108, E-mail) , S.-W. Han, Phone) +82-31-670-3150, FAX) +82-2-670-8845, E-mail) , ORCID, Sang Jun Lee https://orcid.org/0000-0002-2803-753X, Sang-Wook Han https://orcid.org/0000-0002-0893-1438
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong 7546, Korea
- Co-corresponding authors. S. J. Lee, Phone) +82-31-670-3356, FAX) +82-2-675-3108, E-mail) , S.-W. Han, Phone) +82-31-670-3150, FAX) +82-2-670-8845, E-mail) , ORCID, Sang Jun Lee https://orcid.org/0000-0002-2803-753X, Sang-Wook Han https://orcid.org/0000-0002-0893-1438
| |
Collapse
|
6
|
Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources. mBio 2020; 11:mBio.02684-19. [PMID: 32184246 PMCID: PMC7078475 DOI: 10.1128/mbio.02684-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer (“fluxomic”) analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed (“fluxed”) through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this “blueprint” is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents. Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized “EDEMP cycle” (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each.
Collapse
|