1
|
Gourgues G, Manso-Silván L, Chamberland C, Sirand-Pugnet P, Thiaucourt F, Blanchard A, Baby V, Lartigue C. A toolbox for manipulating the genome of the major goat pathogen, Mycoplasma capricolum subsp. capripneumoniae. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001423. [PMID: 38193814 PMCID: PMC10866025 DOI: 10.1099/mic.0.001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Mycoplasma capricolum subspecies capripneumoniae (Mccp) is the causative agent of contagious caprine pleuropneumonia (CCPP), a devastating disease listed by the World Organisation for Animal Health (WOAH) as a notifiable disease and threatening goat production in Africa and Asia. Although a few commercial inactivated vaccines are available, they do not comply with WOAH standards and there are serious doubts regarding their efficacy. One of the limiting factors to comprehend the molecular pathogenesis of CCPP and develop improved vaccines has been the lack of tools for Mccp genome engineering. In this work, key synthetic biology techniques recently developed for closely related mycoplasmas were adapted to Mccp. CReasPy-Cloning was used to simultaneously clone and engineer the Mccp genome in yeast, prior to whole-genome transplantation into M. capricolum subsp. capricolum recipient cells. This approach was used to knock out an S41 serine protease gene recently identified as a potential virulence factor, leading to the generation of the first site-specific Mccp mutants. The Cre-lox recombination system was then applied to remove all DNA sequences added during genome engineering. Finally, the resulting unmarked S41 serine protease mutants were validated by whole-genome sequencing and their non-caseinolytic phenotype was confirmed by casein digestion assay on milk agar. The synthetic biology tools that have been successfully implemented in Mccp allow the addition and removal of genes and other genetic features for the construction of seamless targeted mutants at ease, which will pave the way for both the identification of key pathogenicity determinants of Mccp and the rational design of novel, improved vaccines for the control of CCPP.
Collapse
Affiliation(s)
- Géraldine Gourgues
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Lucía Manso-Silván
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, F-34398, Montpellier, France
| | - Catherine Chamberland
- Université de Sherbrooke, Département de biologie, Sherbrooke, Québec, J1K 2R1, Canada
| | | | - François Thiaucourt
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, F-34398, Montpellier, France
| | - Alain Blanchard
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Vincent Baby
- Université de Montréal, Faculté de médecine vétérinaire, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Carole Lartigue
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| |
Collapse
|
2
|
Guiraud J, Le Roy C, Rideau F, Sirand-Pugnet P, Lartigue C, Bébéar C, Arfi Y, Pereyre S. Improved transformation efficiency in Mycoplasma hominis enables disruption of the MIB-MIP system targeting human immunoglobulins. Microbiol Spectr 2023; 11:e0187323. [PMID: 37737635 PMCID: PMC10581049 DOI: 10.1128/spectrum.01873-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023] Open
Abstract
The pathogenicity of Mycoplasma hominis is poorly understood, mainly due to the absence of efficient genetic tools. A polyethylene glycol-mediated transformation protocol was recently developed for the M. hominis reference strain M132 using the pMT85-Tet plasmid. The transformation efficiency remained low, hampering generation of a large mutant library. In this study, we improved transformation efficiency by designing M. hominis-specific pMT85 derivatives. Using the Gibson Assembly, the Enterococcus-derived tet(M) gene of the pMT85-Tet plasmid was replaced by that of a M. hominis clinical isolate. Next, the Spiroplasma-derived spiralin gene promoter driving tet(M) expression was substituted by one of three putative regulatory regions (RRs): the M. hominis arginine deiminase RR, the M. hominis elongation factor Tu RR, or the 68 bp SynMyco synthetic RR. SynMyco-based construction led to a 100-fold increase in transformation efficiency in M. hominis M132. This construct was also transformed into the M. hominis PG21 reference strain and three other clinical isolates. The transposon insertion locus was determined for 128 M132-transformants. The majority of the impacted coding sequences encoded lipoproteins and proteins involved in DNA repair or in gene transfer. One transposon integration site was in the mycoplasma immunoglobulin protease gene. Phenotypic characterization of the mutant showed complete disruption of the human antibody cleavage ability of the transformant. These results demonstrate that our M. hominis-optimized plasmid can be used to generate large random transposon insertion libraries, enabling future studies of the pathogenicity of M. hominis. IMPORTANCE Mycoplasma hominis is an opportunistic human pathogen, whose physiopathology is poorly understood and for which genetic tools for transposition mutagenesis have been unavailable for years. A PEG-mediated transformation protocol was developed using the pMT85-Tet plasmid, but the transformation efficiency remained low. We designed a modified pMT85-Tet plasmid suitable for M. hominis. The use of a synthetic regulatory region upstream of the antibiotic resistance marker led to a 100-fold increase in the transformation efficiency. The generation and characterization of large transposon mutagenesis mutant libraries will provide insight into M. hominis pathogenesis. We selected a transformant in which the transposon was integrated in the locus encoding the immunoglobulin cleavage system MIB-MIP. Phenotypic characterization showed that the wild-type strain has a functional MIB-MIP system, whereas the mutant strain had lost the ability to cleave human immunoglobulins.
Collapse
Affiliation(s)
- Jennifer Guiraud
- Centre national de la recherche scientifique (CNRS), UMR 5234 Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
- Bacteriology Department, National Reference Centre for Bacterial Sexually Transmitted Infections, Bordeaux University Hospital, Bordeaux, France
| | - Chloé Le Roy
- Centre national de la recherche scientifique (CNRS), UMR 5234 Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
| | - Fabien Rideau
- INRAE, BFP, UMR 1332, Univ. Bordeaux, Villenave d Ornon, France
| | | | - Carole Lartigue
- INRAE, BFP, UMR 1332, Univ. Bordeaux, Villenave d Ornon, France
| | - Cécile Bébéar
- Centre national de la recherche scientifique (CNRS), UMR 5234 Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
- Bacteriology Department, National Reference Centre for Bacterial Sexually Transmitted Infections, Bordeaux University Hospital, Bordeaux, France
| | - Yonathan Arfi
- INRAE, BFP, UMR 1332, Univ. Bordeaux, Villenave d Ornon, France
| | - Sabine Pereyre
- Centre national de la recherche scientifique (CNRS), UMR 5234 Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
- Bacteriology Department, National Reference Centre for Bacterial Sexually Transmitted Infections, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
3
|
Dong MJ, Luo H, Gao F. Ori-Finder 2022: A Comprehensive Web Server for Prediction and Analysis of Bacterial Replication Origins. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1207-1213. [PMID: 36257484 DOI: 10.1016/j.gpb.2022.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022]
Abstract
The replication of DNA is a complex biological process that is essential for life. Bacterial DNA replication is initiated at genomic loci referred to as replication origins (oriCs). Integrating the Z-curve method, DnaA box distribution, and comparative genomic analysis, we developed a web server to predict bacterial oriCs in 2008 called Ori-Finder, which contributes to clarify the characteristics of bacterial oriCs. The oriCs of hundreds of sequenced bacterial genomes have been annotated in the genome reports using Ori-Finder and the predicted results have been deposited in DoriC, a manually curated database of oriCs. This has facilitated large-scale data mining of functional elements in oriCs and strand-biased analysis. Here, we describe Ori-Finder 2022 with updated prediction framework, interactive visualization module, new analysis module, and user-friendly interface. More species-specific indicator genes and functional elements of oriCs are integrated into the updated framework, which has also been redesigned to predict oriCs in draft genomes. The interactive visualization module displays more genomic information related to oriCs and their functional elements. The analysis module includes regulatory protein annotation, repeat sequence discovery, homologous oriC search, and strand-biased analyses. The redesigned interface provides additional customization options for oriC prediction. Ori-Finder 2022 is freely available at http://tubic.tju.edu.cn/Ori-Finder/ and https://tubic.org/Ori-Finder/.
Collapse
Affiliation(s)
- Mei-Jing Dong
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
4
|
Yus E, Lloréns-Rico V, Martínez S, Gallo C, Eilers H, Blötz C, Stülke J, Lluch-Senar M, Serrano L. Determination of the Gene Regulatory Network of a Genome-Reduced Bacterium Highlights Alternative Regulation Independent of Transcription Factors. Cell Syst 2019; 9:143-158.e13. [PMID: 31445891 PMCID: PMC6721554 DOI: 10.1016/j.cels.2019.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/14/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022]
Abstract
Here, we determined the relative importance of different transcriptional mechanisms in the genome-reduced bacterium Mycoplasma pneumoniae, by employing an array of experimental techniques under multiple genetic and environmental perturbations. Of the 143 genes tested (21% of the bacterium’s annotated proteins), only 55% showed an altered phenotype, highlighting the robustness of biological systems. We identified nine transcription factors (TFs) and their targets, representing 43% of the genome, and 16 regulators that indirectly affect transcription. Only 20% of transcriptional regulation is mediated by canonical TFs when responding to perturbations. Using a Random Forest, we quantified the non-redundant contribution of different mechanisms such as supercoiling, metabolic control, RNA degradation, and chromosome topology to transcriptional changes. Model-predicted gene changes correlate well with experimental data in 95% of the tested perturbations, explaining up to 70% of the total variance when also considering noise. This analysis highlights the importance of considering non-TF-mediated regulation when engineering bacteria. Full comprehensive reconstruction of a bacterial gene regulatory network achieved Genome-reduced bacterium Mycoplasma pneumoniae is robust to genetic perturbations Large part of transcription regulation in bacteria is transcription-factor independent Transcription-factor-independent regulation has a smaller dynamic range
Collapse
Affiliation(s)
- Eva Yus
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain.
| | - Verónica Lloréns-Rico
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain.
| | - Sira Martínez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Hinnerk Eilers
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Cedric Blötz
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|