1
|
Jeon H, Lee D, Kim JY, Shim JJ, Lee JH. Limosilactobacillus reuteri HY7503 and Its Cellular Proteins Alleviate Endothelial Dysfunction by Increasing Nitric Oxide Production and Regulating Cell Adhesion Molecule Levels. Int J Mol Sci 2024; 25:11326. [PMID: 39457107 PMCID: PMC11509054 DOI: 10.3390/ijms252011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Endothelial dysfunction, which is marked by a reduction in nitric oxide (NO) production or an imbalance in relaxing and contracting factor levels, exacerbates atherosclerosis by promoting the production of cell adhesion molecules and cytokines. This study aimed to investigate the effects of Limosilactobacillus reuteri HY7503, a novel probiotic isolated from raw milk, on endothelial dysfunction. Five lactic acid bacterial strains were screened for their antioxidant, anti-inflammatory, and endothelium-protective properties; L. reuteri HY7503 had the most potent effect. In a mouse model of angiotensin II-induced endothelial dysfunction, L. reuteri HY7503 reduced vascular thickening (19.78%), increased serum NO levels (226.70%), upregulated endothelial NO synthase (eNOS) expression in the aortic tissue, and decreased levels of cell adhesion molecules (intercellular adhesion molecule-1 [ICAM-1] and vascular cell adhesion molecule-1 [VCAM-1]) and serum cytokines (tumor necrosis factor-alpha [TNF-α] and interleukin-6 [IL-6]). In TNF-α-treated human umbilical vein endothelial cells (HUVECs), L. reuteri HY7503 enhanced NO production and reduced cell adhesion molecule levels. In HUVECs, surface-layer proteins (SLPs) were more effective than extracellular vesicles (exosomes) in increasing NO production and decreasing cell adhesion molecule levels. These findings suggested that L. reuteri HY7503 may serve as a functional probiotic that alleviates endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Gyeonggi-do, Republic of Korea; (H.J.); (D.L.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
2
|
Lee CG, Cha KH, Kim GC, Im SH, Kwon HK. Exploring probiotic effector molecules and their mode of action in gut-immune interactions. FEMS Microbiol Rev 2023; 47:fuad046. [PMID: 37541953 DOI: 10.1093/femsre/fuad046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023] Open
Abstract
Probiotics, live microorganisms that confer health benefits when consumed in adequate amounts, have gained significant attention for their potential therapeutic applications. The beneficial effects of probiotics are believed to stem from their ability to enhance intestinal barrier function, inhibit pathogens, increase beneficial gut microbes, and modulate immune responses. However, clinical studies investigating the effectiveness of probiotics have yielded conflicting results, potentially due to the wide variety of probiotic species and strains used, the challenges in controlling the desired number of live microorganisms, and the complex interactions between bioactive substances within probiotics. Bacterial cell wall components, known as effector molecules, play a crucial role in mediating the interaction between probiotics and host receptors, leading to the activation of signaling pathways that contribute to the health-promoting effects. Previous reviews have extensively covered different probiotic effector molecules, highlighting their impact on immune homeostasis. Understanding how each probiotic component modulates immune activity at the molecular level may enable the prediction of immunological outcomes in future clinical studies. In this review, we present a comprehensive overview of the structural and immunological features of probiotic effector molecules, focusing primarily on Lactobacillus and Bifidobacterium. We also discuss current gaps and limitations in the field and propose directions for future research to enhance our understanding of probiotic-mediated immunomodulation.
Collapse
Affiliation(s)
- Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, 679, Saimdang-ro, Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, 679, Saimdang-ro, Seoul 02792, Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, 20, Ilsan-ro, Wonju 26493, Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, 679, Saimdang-ro, Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, 679, Saimdang-ro, Seoul 02792, Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, 20, Ilsan-ro, Wonju 26493, Korea
| | - Gi-Cheon Kim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul 03722, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, 77, Cheongam-ro, Pohang 37673, Korea
- Institute for Convergence Research and Education, Yonsei University, 50-1 Yonsei-ro, Seoul 03722, Korea
- ImmunoBiome Inc, Bio Open Innovation Center, 77, Cheongam-ro, Pohang 37673 , Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul 03722, Korea
| |
Collapse
|
3
|
Assandri MH, Malamud M, Trejo FM, Serradell MDLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100187. [PMID: 37064268 PMCID: PMC10102220 DOI: 10.1016/j.crmicr.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
Collapse
|
4
|
Secretome Analysis of the Plant Biostimulant Bacteria Strains Bacillus subtilis (EB2004S) and Lactobacillus helveticus (EL2006H) in Response to pH Changes. Int J Mol Sci 2022; 23:ijms232315144. [PMID: 36499471 PMCID: PMC9739546 DOI: 10.3390/ijms232315144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
It is well-known that there is a high frequency of plant-growth-promoting strains in Bacillus subtilis and that these can be effective under both stressful and stress-free conditions. There are very few studies of this activity in the case of Lactobacillus helveticus. In this study, the effects of pH on the secretome (proteins) in the cell-free supernatants of two bacterial strains were evaluated. The bacteria were cultured at pH 5, 7 and 8, and their secretome profiles were analyzed, with pH 7 (optimal growth pH) considered as the "control". The results showed that acidity (lower pH 5) diminishes the detectable production of most of the secretome proteins, whereas alkalinity (higher pH 8) increases the detectable protein production. At pH 5, five (5) new proteins were produced by L. helveticus, including class A sortase, fucose-binding lectin II, MucBP-domain-containing protein, SLAP-domain-containing protein and hypothetical protein LHEJCM1006_11110, whereas for B. subtilis, four (4) types of proteins were uniquely produced (p ≤ 0.05), including helicase-exonuclease AddAB subunit AddB, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase, a cluster of ABC-F family ATP-binding-cassette-domain-containing proteins and a cluster of excinuclease ABC (subunit B). At pH 8, Bacillus subtilis produced 56 unique proteins. Many of the detected proteins were involved in metabolic processes, whereas the others had unknown functions. The unique and new proteins with known and unknown functions suggest potential the acclimatization of the microbes to pH stress.
Collapse
|
5
|
Garbacz K. Anticancer activity of lactic acid bacteria. Semin Cancer Biol 2022; 86:356-366. [PMID: 34995799 DOI: 10.1016/j.semcancer.2021.12.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023]
Abstract
Lactic acid bacteria (LAB), a group of Gram-positive microorganisms naturally occurring in fermented food products and used as probiotics, have been gaining the interest of researchers for years. LAB are potent, albeit still not wholly understood, source of bioactive compounds with various functions and activity. Metabolites of LAB, among others, short-chain fatty acids, exopolysaccharides and bacteriocins have promising anticancer potential. Research on the interactions between the bioactive metabolites of LAB and immune mechanisms demonstrated that these substances could exert a strong immunomodulatory effect, which would explain their vast therapeutic potential. The anticancer activity of LAB was confirmed both in vitro and in animal models against cancer cells from various malignancies. LAB inhibit tumor growth through various mechanisms, including antiproliferative activity, induction of apoptosis, cell cycle arrest, as well as through antimutagenic, antiangiogenic and anti-inflammatory effects. The aim of this review was to summarize the most recent data about the anticancer activity of LAB, with particular emphasis on the most promising bioactive compounds with potential clinical application.
Collapse
Affiliation(s)
- Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 25 Dębowa Str., 80-204, Gdansk, Poland.
| |
Collapse
|
6
|
Surface Layer Protein Pattern of Levilactobacillus brevis Strains Investigated by Proteomics. Nutrients 2022; 14:nu14183679. [PMID: 36145058 PMCID: PMC9504196 DOI: 10.3390/nu14183679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The outermost constituent of many bacterial cells is represented by an S-layer, i.e., a semiporous lattice-like layer composed of self-assembling protein subunits called S-layer proteins (Slps). These proteins are involved in several processes, such as protecting against environmental stresses, mediating bacterial adhesion to host cells, and modulating gut immune response. Slps may also act as a scaffold for the external display of additional cell surface proteins also named S-layer associated proteins (SLAPs). Levilactobacillus brevis is an S-layer forming lactic acid bacterium present in many different environments, such as sourdough, milk, cheese, and the intestinal tract of humans and animals. This microorganism exhibits probiotic features including the inhibition of bacterial infection and the improvement of human immune function. The potential role of Slps in its probiotic and biotechnological features was documented. A shotgun proteomic approach was applied to identify in a single experiment both the Slps and the SLAPs pattern of five different L. brevis strains isolated from traditional sourdoughs of the Southern Italian region. This study reveals that these closely related strains expressed a specific pattern of surface proteins, possibly affecting their peculiar properties.
Collapse
|
7
|
Fei Y, Li L, Huang L, Liu G, Bai W, Liang R. Phenotypic and comparative genomic analysis of two
Lactobacillus amylolyticus
strains from naturally fermented tofu whey. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Li Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Li Huang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Ruiheng Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
8
|
Hoffecker IT, Shaw A, Sorokina V, Smyrlaki I, Högberg B. Stochastic modeling of antibody binding predicts programmable migration on antigen patterns. NATURE COMPUTATIONAL SCIENCE 2022; 2:179-192. [PMID: 36311262 PMCID: PMC7613752 DOI: 10.1038/s43588-022-00218-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Viruses and bacteria commonly exhibit spatial repetition of surface molecules that directly interface with the host immune system. However the complex interaction of patterned surfaces with immune molecules containing multiple binding domains is poorly understood. We developed a pipeline for constructing mechanistic models of antibody interactions with patterned antigen substrates. Our framework relies on immobilized DNA origami nanostructures decorated with precisely placed antigens. The results revealed that antigen spacing is a spatial control parameter that can be tuned to influence antibody residence time and migration speed. The model predicts that gradients in antigen spacing can drive persistent, directed antibody migration in the direction of more stable spacing. These results depict antibody-antigen interactions as a computational system wherein antigen geometry constrains and potentially directs antibody movement. We propose that this form of molecular programmability could be exploited during co-evolution of pathogens and immune systems or in the design of molecular machines.
Collapse
Affiliation(s)
- Ian T. Hoffecker
- Division of Biomaterials, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 16, 17165 Solna, Sweden
- Dept. of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23a, 17165 Solna, Sweden
- ,
| | - Alan Shaw
- Division of Biomaterials, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 16, 17165 Solna, Sweden
- Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720-3220
| | - Viktoria Sorokina
- Division of Biomaterials, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 16, 17165 Solna, Sweden
| | - Ioanna Smyrlaki
- Division of Biomaterials, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 16, 17165 Solna, Sweden
| | - Björn Högberg
- Division of Biomaterials, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 16, 17165 Solna, Sweden
- ,
| |
Collapse
|
9
|
Gorreja F, Walker WA. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes 2022; 14:2149214. [PMID: 36469568 PMCID: PMC9728474 DOI: 10.1080/19490976.2022.2149214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous studies point to the important role of probiotic bacteria in gastrointestinal health. Probiotics act through mechanisms affecting enteric pathogens, epithelial barrier function, immune signaling, and conditioning of indigenous microbiota. Once administered, probiotics reach the gastrointestinal tract and interact with the host through bacterial surface molecules, here called adhesion factors, which are either strain- or specie-specific. Probiotic adhesion, through structural adhesion factors, is a mechanism that facilitates persistence within the gastrointestinal tract and triggers the initial host responses. Thus, an understanding of specific probiotic adhesion mechanisms could predict how specific probiotic strains elicit benefits and the potential of adherence factors as a proxy to predict probiotic function. This review summarizes the present understanding of probiotic adherence in the gastrointestinal tract. It highlights the bacterial adhesion structure types, their molecular communication with the host and the consequent impact on intestinal diseases in both adult and pediatric populations. Finally, we discuss knockout/isolation studies as direct evidence for adhesion factors conferring anti-inflammatory and pathogen inhibition properties to a probiotic.What is known: Probiotics can be used to treat clinical conditions.Probiotics improve dysbiosis and symptoms.Clinical trials may not confirm in vitro and animal studies.What is new: Adhesion structures may be important for probiotic function.Need to systematically determine physical characteristics of probiotics before selecting for clinical trials.Probiotics may be genetically engineered to add to clinical efficacy.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Fu M, Mao K, Gao J, Wang X, Sadiq FA, Li J, Sang Y. Characteristics of surface layer protein from Lactobacillus kefiri HBA20 and the role in mediating interactions with Saccharomyces cerevisiae Y8. Int J Biol Macromol 2021; 201:254-261. [PMID: 34952095 DOI: 10.1016/j.ijbiomac.2021.12.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
In this study, the surface layer protein (SLP) from Lactobacillus kefiri HBA20 was characterized. The SLP was extracted by 5 M LiCl. The molecular mass of the SLP was approximately 64 kDa as analyzed via SDS-PAGE. The surface morphology and the adhesion potential of L. kefiri HBA20 in the absence and presence of SLP were measured by AFM. Moreover, the protein secondary structure was evaluated by using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. SLP had high β-sheet contents and low content of α-helix. Thermal analysis of SLP of Lactobacillus kefiri HBA20 exhibited one transition peak at 129.64 °C. Furthermore, SEM measurements were showed that after the SLP were removed from the cell surface, the coaggregation ability with Saccharomyces cerevisiae Y8 of the strain was significantly reduced. In conclusion, the SLP of Lactobacillus kefiri HBA20 has a stable structure and the ability of adhesion to yeast. Molecular docking study revealed that mannan bind with the hydrophobic residues of SLP. Our results will help further understanding of the new surface layer protein and the interaction between L. kefiri and S. cerevisiae.
Collapse
Affiliation(s)
- Mengqi Fu
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Kemin Mao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Gao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianghong Wang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Jiale Li
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
11
|
Nataraj BH, Shivanna SK, Rao P, Nagpal R, Behare PV. Evolutionary concepts in the functional biotics arena: a mini-review. Food Sci Biotechnol 2021; 30:487-496. [PMID: 33936839 PMCID: PMC8050181 DOI: 10.1007/s10068-020-00818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Over the years, the attempts to elucidate the role of beneficial microorganisms in shaping human health are becoming fairly apparent. The functional impact conferred by such microbes is not only transmitted by viable cells or their metabolites but also through non-viable cells. Extensive research to unveil the protective action of such wonder bugs has resulted in categorizing the beneficial microflora and their bioactive metabolites into a variety of functional biotic concepts based on their intended applications in various forms. In the modern era, these are often termed as probiotics, prebiotics, synbiotics, postbiotics, next-generation probiotics, psychobiotics, oncobiotics, pharmabiotics, and metabiotics. Currently, the concept of traditional probiotics is being widened to include microbes beyond lactic acid bacteria. Indeed, this diversification has broadened the functional food portfolio from food to pharmaceuticals. In this context, the present review aims to summarize the existing biotic concepts and their differences thereof.
Collapse
Affiliation(s)
- Basavaprabhu H. Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Insititute, Karnal, Haryana 132001 India
| | - Sonu K. Shivanna
- Dairy Chemistry Division, ICAR-National Dairy Research Insititute, Karnal, Haryana 132001 India
| | - Prabha Rao
- Dairy Microbiology Department, Dairy Science College, KVAFSU, Hebbal, Bengaluru, Karnataka 560024 India
| | - Ravinder Nagpal
- Center for Diabetes, Obesity and Metabolism, Department of Internal Medicine and Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27101 USA
| | - Pradip V. Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Insititute, Karnal, Haryana 132001 India
| |
Collapse
|
12
|
Prado Acosta M, Goyette-Desjardins G, Scheffel J, Dudeck A, Ruland J, Lepenies B. S-Layer From Lactobacillus brevis Modulates Antigen-Presenting Cell Functions via the Mincle-Syk-Card9 Axis. Front Immunol 2021; 12:602067. [PMID: 33732234 PMCID: PMC7957004 DOI: 10.3389/fimmu.2021.602067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
C-type lectin receptors (CLRs) are pattern recognition receptors that are crucial in the innate immune response. The gastrointestinal tract contributes significantly to the maintenance of immune homeostasis; it is the shelter for billions of microorganisms including many genera of Lactobacillus sp. Previously, it was shown that host-CLR interactions with gut microbiota play a crucial role in this context. The Macrophage-inducible C-type lectin (Mincle) is a Syk-coupled CLR that contributes to sensing of mucosa-associated commensals. In this study, we identified Mincle as a receptor for the Surface (S)-layer of the probiotic bacteria Lactobacillus brevis modulating GM-CSF bone marrow-derived cells (BMDCs) functions. We found that the S-layer/Mincle interaction led to a balanced cytokine response in BMDCs by triggering the release of both pro- and anti-inflammatory cytokines. In contrast, BMDCs derived from Mincle−/−, CARD9−/− or conditional Syk−/− mice failed to maintain this balance, thus leading to an increased production of the pro-inflammatory cytokines TNF and IL-6, whereas the levels of the anti-inflammatory cytokines IL-10 and TGF-β were markedly decreased. Importantly, this was accompanied by an altered CD4+ T cell priming capacity of Mincle−/− BMDCs resulting in an increased CD4+ T cell IFN-γ production upon stimulation with L. brevis S-layer. Our results contribute to the understanding of how commensal bacteria regulate antigen-presenting cell (APC) functions and highlight the importance of the Mincle/Syk/Card9 axis in APCs as a key factor in host-microbiota interactions.
Collapse
Affiliation(s)
- Mariano Prado Acosta
- Research Center for Emerging Infections and Zoonoses, Institute for Immunology, University of Veterinary Medicine, Hannover, Germany
| | - Guillaume Goyette-Desjardins
- Research Center for Emerging Infections and Zoonoses, Institute for Immunology, University of Veterinary Medicine, Hannover, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jürgen Ruland
- School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Bernd Lepenies
- Research Center for Emerging Infections and Zoonoses, Institute for Immunology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
13
|
Klotz C, Goh YJ, O'Flaherty S, Barrangou R. S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiol 2020; 20:248. [PMID: 32787778 PMCID: PMC7425073 DOI: 10.1186/s12866-020-01908-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Surface layers (S-layers) are two-dimensional crystalline arrays of repeating proteinaceous subunits that form the outermost layer of many bacterial cell envelopes. Within the Lactobacillus genus, S-layer presence is frequently associated with probiotic-relevant properties such as improved adherence to host epithelial cells and modulation of the immune response. However, recent studies have demonstrated that certain S-layer functions may be supplemented by a novel subset of proteins embedded within its lattice, termed S-layer associated proteins (SLAPs). In the following study, four Lactobacillus acidophilus NCFM SLAPs (LBA0046, LBA0864, LBA1426, and LBA1539) were selected for in silico and phenotypic assessment. RESULTS Despite lacking any sequence similarity or catalytic domains that may indicate function, the genes encoding the four proteins of interest were shown to be unique to S-layer-forming, host-adapted lactobacilli species. Likewise, their corresponding deletion mutants exhibited broad, host-relevant phenotypes including decreased inflammatory profiles and reduced adherence to Caco-2 intestinal cells, extracellular matrices, and mucin in vitro. CONCLUSIONS Overall, the data presented in this study collectively links several previously uncharacterized extracellular proteins to roles in the underlying host adaptive mechanisms of L. acidophilus.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program North Carolina State University, Raleigh, NC, USA.,Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yong Jun Goh
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program North Carolina State University, Raleigh, NC, USA. .,Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Klotz C, Goh YJ, O'Flaherty S, Johnson B, Barrangou R. Deletion of S-Layer Associated Ig-Like Domain Protein Disrupts the Lactobacillus acidophilus Cell Surface. Front Microbiol 2020; 11:345. [PMID: 32256464 PMCID: PMC7090030 DOI: 10.3389/fmicb.2020.00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
Bacterial surface-layers (S-layers) are crystalline arrays of repeating proteinaceous subunits that coat the exterior of many cell envelopes. S-layers have demonstrated diverse functions in growth and survival, maintenance of cell integrity, and mediation of host interactions. Additionally, S-layers can act as scaffolds for the outward display of auxiliary proteins and glycoproteins. These non-covalently bound S-layer associated proteins (SLAPs) have characterized roles in cell division, adherence to intestinal cells, and modulation of the host immune response. Recently, IgdA (LBA0695), a Lactobacillus acidophilus SLAP that possesses a Group 3 immunoglobulin (Ig)-like domain and GW (Gly-Tryp) dipeptide surface anchor, was recognized for its high conservation among S-layer-forming lactobacilli, constitutive expression, and surface localization. These findings prompted its selection for examination within the present study. Although IgdA and corresponding orthologs were shown to be unique to host-adapted lactobacilli, the Ig domain itself was specific to vertebrate-adapted species suggesting a role in vertebrate adaptation. Using a counterselective gene replacement system, igdA was deleted from the L. acidophilus NCFM chromosome. The resultant mutant, NCK2532, exhibited a visibly disrupted cell surface which likely contributed to its higher salt sensitivity, severely reduced adhesive capacity, and altered immunogenicity profile. Transcriptomic analyses revealed the induction of several stress response genes and secondary surface proteins. Due to the broad impact of IgdA on the cellular physiology and probiotic attributes of L. acidophilus, identification of similar proteins in alternative bacterial species may help pinpoint next-generation host-adapted probiotic candidates.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Brant Johnson
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Microbiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Microbiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
15
|
Shelf-life extension of freeze-dried Lactobacillus brevis WiKim0069 using supercooling pretreatment. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|