1
|
Barske T, Hagemann M. The regulatory impact of serine/threonine-specific protein phosphorylation among cyanobacteria. FRONTIERS IN PLANT SCIENCE 2025; 16:1540914. [PMID: 40012730 PMCID: PMC11863333 DOI: 10.3389/fpls.2025.1540914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis. To thrive under environmental fluctuations, photosynthesis and metabolic activities needs to be adjusted. Previous studies showed that the acclimation of primary carbon metabolism to fluctuating carbon/nitrogen levels is mainly regulated at post-transcriptional level including diverse posttranslational modifications (PTMs). Protein phosphorylation is regarded as main PTM in the sensing and balancing metabolic changes. In this review we aim to summarize the knowledge on serine/threonine-specific protein phosphorylation among cyanobacteria. Phosphoproteome studies identified several hundred phosphoproteins bearing many more specific phosphorylation sites. On the other hand, only relatively few serine/threonine-specific protein kinases were annotated in cyanobacterial genomes, for example 12 in the model cyanobacterium Synechocystis sp. PCC 6803. Systematic mutation of the kinase-encoding genes revealed first insights into their specific functions and substrates. Future research is needed to address how a limited number of protein kinases can specifically modify hundreds of phosphoproteins and to uncover their roles in the regulatory networks of cyanobacterial metabolism.
Collapse
Affiliation(s)
| | - Martin Hagemann
- Department Plant Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Barske T, Spät P, Schubert H, Walke P, Maček B, Hagemann M. The Role of Serine/Threonine-Specific Protein Kinases in Cyanobacteria - SpkB Is Involved in Acclimation to Fluctuating Conditions in Synechocystis sp. PCC 6803. Mol Cell Proteomics 2023; 22:100656. [PMID: 37797745 PMCID: PMC10651672 DOI: 10.1016/j.mcpro.2023.100656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/31/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023] Open
Abstract
Protein phosphorylation via serine/threonine protein kinases (Spk) is a widespread mechanism to adjust cellular processes toward changing environmental conditions. To study their role(s) in cyanobacteria, we investigated a collection of 11 completely segregated spk mutants among the 12 annotated Spks in the model cyanobacterium Synechocystis sp. PCC 6803. Screening of the mutant collection revealed that especially the mutant defective in SpkB encoded by slr1697 showed clear deviations regarding carbon metabolism, that is, reduced growth rates at low CO2 or in the presence of glucose, and different glycogen accumulation patterns compared to WT. Alterations in the proteome of ΔspkB indicated changes of the cell surface but also metabolic functions. A phospho-proteome analysis revealed the absence of any phosphorylation in two proteins, while decreased phosphorylation of the carboxysome-associated protein CcmM and increased phosphorylation of the allophycocyanin alpha subunit ApcA was detected in ΔspkB. Furthermore, the regulatory PII protein appeared less phosphorylated in the mutant compared to WT, which was verified in Western blot experiments, indicating a clearly delayed PII phosphorylation in cells shifted from nitrate-containing to nitrate-free medium. Our results indicate that SpkB is an important regulator in Synechocystis that is involved in phosphorylation of the PII protein and additional proteins.
Collapse
Affiliation(s)
- Thomas Barske
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Philipp Spät
- Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hendrik Schubert
- Department of Aquatic Ecology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Peter Walke
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany; Interdisciplinary Faculty, Department Life, Light and Matter, University of Rostock, Rostock, Germany.
| |
Collapse
|
3
|
Tang C, Li J, Shen Y, Liu M, Liu H, Liu H, Xun L, Xia Y. A sulfide-sensor and a sulfane sulfur-sensor collectively regulate sulfur-oxidation for feather degradation by Bacillus licheniformis. Commun Biol 2023; 6:167. [PMID: 36765168 PMCID: PMC9918477 DOI: 10.1038/s42003-023-04538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Bacillus licheniformis MW3 degrades bird feathers. Feather keratin is rich in cysteine, which is metabolized to produce hazardous sulfide and sulfane sulfur. A challenge to B. licheniformis MW3 growing on feathers is to detoxify them. Here we identified a gene cluster in B. licheniformis MW3 to deal with these toxicity. The cluster contains 11 genes: the first gene yrkD encodes a repressor, the 8th and 9th genes nreB and nreC encode a two-component regulatory system, and the 10th and 11th genes encode sulfide: quinone reductase (SQR) and persulfide oxygenase (PDO). SQR and PDO collectively oxidize sulfide and sulfane sulfur to sulfite. YrkD sensed sulfane sulfur to derepress the 11 genes. The NreBC system sensed sulfide and further amplified the transcription of sqr and pdo. The two regulatory systems synergistically controlled the expression of the gene cluster, which was required for the bacterium to grow on feather. The findings highlight the necessity of removing sulfide and sulfane sulfur during feather degradation and may help with bioremediation of feather waste and sulfide pollution.
Collapse
Affiliation(s)
- Chao Tang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Jingjing Li
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China ,grid.10388.320000 0001 2240 3300Present Address: Institut für Mikrobiologie & Biotechnologie of Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Yuemeng Shen
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Menghui Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Honglei Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Huaiwei Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. .,School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA.
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
4
|
Khan K, Jalal K, Khan A, Al-Harrasi A, Uddin R. Comparative Metabolic Pathways Analysis and Subtractive Genomics Profiling to Prioritize Potential Drug Targets Against Streptococcus pneumoniae. Front Microbiol 2022; 12:796363. [PMID: 35222301 PMCID: PMC8866961 DOI: 10.3389/fmicb.2021.796363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae is a notorious pathogen that affects ∼450 million people worldwide and causes up to four million deaths per annum. Despite availability of antibiotics (i.e., penicillin, doxycycline, or clarithromycin) and conjugate vaccines (e.g., PCVs), it is still challenging to treat because of its drug resistance ability. The rise of antibiotic resistance in S. pneumoniae is a major source of concern across the world. Computational subtractive genomics is one of the most applied techniques in which the whole proteome of the bacterial pathogen is gradually reduced to a limited number of potential therapeutic targets. Whole-genome sequencing has greatly reduced the time required and provides more opportunities for drug target identification. The goal of this work is to evaluate and analyze metabolic pathways in serotype 14 of S. pneumonia to identify potential drug targets. In the present study, 47 potent drug targets were identified against S. pneumonia by employing the computational subtractive genomics approach. Among these, two proteins are prioritized (i.e., 4-oxalocrotonate tautomerase and Sensor histidine kinase uniquely present in S. pneumonia) as novel drug targets and selected for further structure-based studies. The identified proteins may provide a platform for the discovery of a lead drug candidate that may be capable of inhibiting these proteins and, therefore, could be helpful in minimizing the associated risk related to the drug-resistant S. pneumoniae. Finally, these enzymatic proteins could be of prime interest against S. pneumoniae to design rational targeted therapy.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Anil A, Apte S, Joseph J, Parthasarathy A, Madhavan S, Banerjee A. Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain Endothelium. J Bacteriol 2021; 203:e0043921. [PMID: 34606370 PMCID: PMC8604078 DOI: 10.1128/jb.00439-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023] Open
Abstract
Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.
Collapse
Affiliation(s)
- Anjali Anil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Jincy Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Akhila Parthasarathy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shilpa Madhavan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
He LY, Le YJ, Guo Z, Li S, Yang XY. The Role and Regulatory Network of the CiaRH Two-Component System in Streptococcal Species. Front Microbiol 2021; 12:693858. [PMID: 34335522 PMCID: PMC8317062 DOI: 10.3389/fmicb.2021.693858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic streptococcal species are responsible for a broad spectrum of human diseases ranging from non-invasive and localized infections to more aggressive and life-threatening diseases, which cause great economic losses worldwide. Streptococci possess a dozen two-component systems (TCSs) that play important roles in the response to different environmental changes and adjust the expression of multiple genes to successfully colonize and infect host cells. In this review, we discuss the progress in the study of a conserved TCS named CiaRH in pathogenic or opportunistic streptococci including Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus mutans, Streptococcus gordonii, Streptococcus sanguinis, and Streptococcus suis, focusing on the function and regulatory networks of CiaRH, which will provide a promising strategy for the exploration of novel antistreptococcal therapies. This review highlights the important role of CiaRH and provides an important basis for the development of antistreptococcal drugs and vaccines.
Collapse
Affiliation(s)
- Li-Yuan He
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yao-Jin Le
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zhong Guo
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, China
| | - Sha Li
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xiao-Yan Yang
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| |
Collapse
|