1
|
Gan Y, Cui J, Nie A, Yang Y, Zhao X. Revealing the influence of Lacticaseibacillus paracasei C5 on the flavor formation of bread dough by metagenomics and flavouromics. Int J Food Microbiol 2025; 437:111220. [PMID: 40286758 DOI: 10.1016/j.ijfoodmicro.2025.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the impact of L. paracasei C5 on the generation of flavor compounds in bread through metagenomics and flavouromics. Metagenomic profiling revealed that L. paracasei C5 facilitated carbohydrate, amino acid, and lipid metabolism in the dough. Correlative analyses between specific microbial species and flavor compounds demonstrated a positive association between L. paracasei and key flavor compounds in bread, such as 2-nonenal,(E)-, 2-octenal,(E)-, benzeneacetaldehyde, and hexanoic acid, ethyl ester. A predictive network outlining the metabolic pathways responsible for L. paracasei C5 sourdough bread flavor compounds was established, elucidating the microbial annotation of pertinent genes and enzymes. The findings underscored the synergistic role of L. paracasei and S. cerevisiae in enhancing the activity of encoded enzymes involved in carbohydrate degradation, acetyl-CoA synthesis, succinate conversion, acyl-CoA production, transaminases, alcohol dehydrogenase, and carboxylesterases. These results offer novel insights into the mechanisms by which L. paracasei C5 augments bread flavor.
Collapse
Affiliation(s)
- Yuxin Gan
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Jinxi Cui
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Aoxuan Nie
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Yuxia Yang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450052, Henan Province, China
| | - Xiuhong Zhao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China.
| |
Collapse
|
2
|
Manzoor M, Muroi M, Ogawa N, Kobayashi H, Nishimura H, Chen D, Fasina OB, Wang J, Osada H, Yoshida M, Xiang L, Qi J. Isoquercitrin from Apocynum venetum L. produces an anti-obesity effect on obese mice by targeting C-1-tetrahydrofolate synthase, carbonyl reductase, and glutathione S-transferase P and modification of the AMPK/SREBP-1c/FAS/CD36 signaling pathway in mice in vivo. Food Funct 2022; 13:10923-10936. [DOI: 10.1039/d2fo02438a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, mice with high-fat-diet-induced obesity were used in investigating the anti-obesity effects of an aqueous extract and isoquercitrin from Apocynum venetum L.
Collapse
Affiliation(s)
- Majid Manzoor
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Naoko Ogawa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Hiroki Kobayashi
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haruna Nishimura
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Danni Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Opeyemi B. Fasina
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Jianyu Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biotechnology and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China
| |
Collapse
|
3
|
Wang H, Wang C, Yuan W, Chen H, Lu W, Zhang H, Chen YQ, Zhao J, Chen W. The role of phenylalanine hydroxylase in lipogenesis in the oleaginous fungus Mortierella alpina. MICROBIOLOGY-SGM 2021; 167. [PMID: 34402775 DOI: 10.1099/mic.0.001062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phenylalanine hydroxylase (PAH) catalyses the irreversible hydroxylation of phenylalanine to tyrosine, which is the rate-limiting reaction in phenylalanine metabolism in animals. A variety of polyunsaturated fatty acids can be synthesized by the lipid-producing fungus Mortierella alpina, which has a wide range of industrial applications in the production of arachidonic acid. In this study, RNA interference (RNAi) with the gene PAH was used to explore the role of phenylalanine hydroxylation in lipid biosynthesis in M. alpina. Our results indicated that PAH knockdown decreased the PAH transcript level by approximately 55% and attenuated cellular fatty acid biosynthesis. Furthermore, the level of NADPH, which is a critical reducing agent and the limiting factor in lipogenesis, was decreased in response to PAH RNAi, in addition to the downregulated transcription of other genes involved in NADPH production. Our study indicates that PAH is part of an overall enzymatic and regulatory mechanism supplying NADPH required for lipogenesis in M. alpina.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chunmei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Weiwei Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, PR China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| |
Collapse
|