1
|
Zhu C, Wang Z, Zhou X, Wu Y, Kang W, Wu R, Xue C. Elucidating the Biosynthesis and Function of an Autoinducing Peptide in Clostridium acetobutylicum. Angew Chem Int Ed Engl 2025; 64:e202500904. [PMID: 39932863 DOI: 10.1002/anie.202500904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Clostridia produce autoinducing peptides (AIPs) regulated by the accessory gene regulator (Agr) quorum sensing system, playing a critical role in intercellular communication. However, the biosynthetic pathway and regulatory functions of clostridial AIPs remain inadequately characterized. In this study, we employed chemical quantification, genetic investigations, and in vitro reconstitution experiments to elucidate the native Ca-AIP in Clostridium acetobutylicum, a prominent industrial producer of acetone, butanol, and ethanol. Our findings identified a signal peptidase (Cac1760) and two CAAX metalloproteases (Cac0077 and Cac2478) as key players in N-terminal cleavage, while AgrB was found to be essential for C-terminal processing during Ca-AIP biosynthesis. Notably, overexpression of agrBD led to a 4.4-fold enhancement in Ca-AIP formation, which corresponded with an increase in butanol production from 12.5 to 14.9 g/L, while preserving vegetative cell morphology. The direct involvement of Ca-AIP in both butanol production and maintenance of cell morphology was further validated through exogenous supplementation. Collectively, these results provide novel insights into the biosynthesis of AIPs and propose a promising strategy for optimizing microbial processes in industrial applications.
Collapse
Affiliation(s)
- Chao Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zixuan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoyu Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Youduo Wu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| | - Wei Kang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| | - Ren'an Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chuang Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| |
Collapse
|
2
|
Jiang Y, Meng F, Ge Z, Zhou Y, Fan Z, Du J. Bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors for the treatment of bacterial infections. J Mater Chem B 2024; 12:11596-11610. [PMID: 39436377 DOI: 10.1039/d4tb01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Insufficient development of new antibiotics and the rise in antimicrobial resistance are putting the world at risk of losing curative medicines against bacterial infection. Quorum sensing is a type of cellular signaling for cell-to-cell communication that plays critical roles in biofilm formation and antimicrobial resistance, and is expected to be a new type of effective target for drug resistant bacteria. In this review we highlight recent advances in bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors across various microbial communities. In addition, existing obstacles and future development directions of peptide/polyamino acid assemblies as quorum sensing inhibitors were proposed for broader clinical applications and translations. Overall, quorum sensing peptide/polyamino acid assemblies could be vital tools against bacterial infection and antimicrobial resistance.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Fanying Meng
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenghong Ge
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianzhong Du
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Jensen RO, Schulz F, Roux S, Klingeman DM, Mitchell WP, Udwary D, Moraïs S, Reynoso V, Winkler J, Nagaraju S, De Tissera S, Shapiro N, Ivanova N, Reddy TBK, Mizrahi I, Utturkar SM, Bayer EA, Woyke T, Mouncey NJ, Jewett MC, Simpson SD, Köpke M, Jones DT, Brown SD. Phylogenomics and genetic analysis of solvent-producing Clostridium species. Sci Data 2024; 11:432. [PMID: 38693191 PMCID: PMC11063209 DOI: 10.1038/s41597-024-03210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.
Collapse
Affiliation(s)
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | | | | | | | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sagar M Utturkar
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Edward A Bayer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | - David T Jones
- Department of Microbiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
4
|
Humphreys JR, Bean Z, Twycross J, Winzer K. The Lanthipeptide Synthetase-like Protein CA_C0082 Is an Effector of Agr Quorum Sensing in Clostridium acetobutylicum. Microorganisms 2023; 11:1460. [PMID: 37374961 DOI: 10.3390/microorganisms11061460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Lanthipeptide synthetases are present in all domains of life. They catalyze a crucial step during lanthipeptide biosynthesis by introducing thioether linkages during posttranslational peptide modification. Lanthipeptides have a wide range of functions, including antimicrobial and morphogenetic activities. Intriguingly, several Clostridium species contain lanthipeptide synthetase-like genes of the class II (lanM) family but lack other components of the lanthipeptide biosynthetic machinery. In all instances, these genes are located immediately downstream of putative agr quorum sensing operons. The physiological role and mode of action of the encoded LanM-like proteins remain uncertain as they lack conserved catalytic residues. Here we show for the industrial organism Clostridium acetobutylicum that the LanM-like protein CA_C0082 is not required for the production of active AgrD-derived signaling peptide but nevertheless acts as an effector of Agr quorum sensing. Expression of CA_C0082 was shown to be controlled by the Agr system and is a prerequisite for granulose (storage polymer) formation. The accumulation of granulose, in turn, was shown to be required for maximal spore formation but also to reduce early solvent formation. CA_C0082 and its putative homologs appear to be closely associated with Agr systems predicted to employ signaling peptides with six-membered ring structures and may represent a new subfamily of LanM-like proteins. This is the first time their contribution to bacterial Agr signaling has been described.
Collapse
Affiliation(s)
- Jonathan R Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Zak Bean
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Jamie Twycross
- School of Computer Science, Jubilee Campus, The University of Nottingham, Nottingham NG8 1BB, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Structural and Genomic Evolution of RRNPPA Systems and Their Pheromone Signaling. mBio 2022; 13:e0251422. [PMID: 36259720 PMCID: PMC9765709 DOI: 10.1128/mbio.02514-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
In Firmicutes, important processes such as competence development, sporulation, virulence, and biofilm formation are regulated by cytoplasmic quorum sensing (QS) receptors of the RRNPPA family using peptide-based communication. Although these systems regulate important processes in a variety of bacteria, their origin and diversification are poorly understood. Here, we integrate structural, genomic, and phylogenetic evidence to shed light on RRNPPA protein origin and diversification. The family is constituted by seven different subfamilies with different domain architectures and functions. Among these, three were found in Lactobacillales (Rgg, ComR, and PrgX) and four in Bacillales (AimR, NprR, PlcR, and Rap). The patterns of presence and the phylogeny of these proteins show that subfamilies diversified a long time ago, resulting in key structural and functional differences. The concordance between the distribution of subfamilies and the bacterial phylogeny was somewhat unexpected, since many of the subfamilies are very abundant in mobile genetic elements, such as phages, plasmids, and phage-plasmids. The existence of diverse propeptide architectures raises intriguing questions about their export and maturation. It also suggests the existence of diverse roles for the RRNPPA systems. Some systems encode multiple pheromones on the same propeptide or multiple similar propeptides, suggesting that they act as "chatterers." Many others lack pheromone genes and may be "eavesdroppers." Interestingly, AimR systems without associated propeptide genes were particularly abundant in chromosomal regions not classed as prophages, suggesting that either the bacterium or other mobile elements are eavesdropping on phage activity. IMPORTANCE Quorum sensing (QS) is a mechanism of bacterial communication, coordinating important decisions depending on bacterial population. QS regulates important processes not only in bacterial behavior but also in genetic mobile elements and host-guest interactions. In Firmicutes, the most important family of QS receptors is the RRNPPA family. Despite the importance of such systems in microbiology, we know little about RRNPPA origin and diversification. In this work, the combination of sequence analysis and structural biology allowed us to identify a very large number of novel systems but also to class of them in functional families and thereby study of their origin and functional diversification. Moreover, peptide pheromone analysis revealed new and intriguing mechanisms of communication, such as "eavesdropper" systems which only listen for the pheromone and "chatterers" that take control of the communication in their microenvironment.
Collapse
|
6
|
ACETONE-BUTYL FERMENTATION PECULIARITIES OF THE BUTANOL STRAINS -PRODUCER. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this review was to generalize and analyze the features of acetone-butyl fermentation as a type of butyric acid fermentation in the process of obtaining butanol as an alternative biofuel. Methods. The methods of analysis and generalization of analytical information and literature sources were used in the review. The results were obtained using the following methods such as microbiological (morphological properties of strains), chromatographic (determination of solvent concentration), spectrophotometric (determination of bacterial concentration), and molecular genetic (phylogenetic analysis of strains). Results. The process of acetone-butyl fermentation was analyzed, the main producer strains were considered, the features of the relationship between alcohol formation and sporulation were described, the possibility of butanol obtaining from synthesis gas was shown, and the features of the industrial production of butanol were considered. Conclusions. The features of the mechanism of acetone-butyl fermentation (the relationships between alcohol formation and sporulation, the duration of the acid-forming and alcohol-forming stages during batch fermentation depending on the change in the concentration of H2, CO, partial pressure, organic acids and mineral additives) and obtaining an enrichment culture during the production of butanol as an alternative fuel were shown. The possibility of using synthesis gas as a substrate for reducing atmospheric emissions during the fermentation process was shown. The direction of increasing the productivity of butanol-producing strains to create a competitive industrial biofuel technology was proposed.
Collapse
|
7
|
Piatek P, Humphreys C, Raut MP, Wright PC, Simpson S, Köpke M, Minton NP, Winzer K. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum. Sci Rep 2022; 12:411. [PMID: 35013405 PMCID: PMC8748961 DOI: 10.1038/s41598-021-03999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
Acetogenic bacteria are capable of fermenting CO2 and carbon monoxide containing waste-gases into a range of platform chemicals and fuels. Despite major advances in genetic engineering and improving these biocatalysts, several important physiological functions remain elusive. Among these is quorum sensing, a bacterial communication mechanism known to coordinate gene expression in response to cell population density. Two putative agr systems have been identified in the genome of Clostridium autoethanogenum suggesting bacterial communication via autoinducing signal molecules. Signal molecule-encoding agrD1 and agrD2 genes were targeted for in-frame deletion. During heterotrophic growth on fructose as a carbon and energy source, single deletions of either gene did not produce an observable phenotype. However, when both genes were simultaneously inactivated, final product concentrations in the double mutant shifted to a 1.5:1 ratio of ethanol:acetate, compared to a 0.2:1 ratio observed in the wild type control, making ethanol the dominant fermentation product. Moreover, CO2 re-assimilation was also notably reduced in both hetero- and autotrophic growth conditions. These findings were supported through comparative proteomics, which showed lower expression of carbon monoxide dehydrogenase, formate dehydrogenase A and hydrogenases in the ∆agrD1∆agrD2 double mutant, but higher levels of putative alcohol and aldehyde dehydrogenases and bacterial micro-compartment proteins. These findings suggest that Agr quorum sensing, and by inference, cell density play a role in carbon resource management and use of the Wood-Ljungdahl pathway as an electron sink.
Collapse
Affiliation(s)
- Pawel Piatek
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Christopher Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Mahendra P Raut
- Department of Chemical and Biological Engineering, The ChELSI Institute, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Phillip C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Sean Simpson
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Molloy EM, Dell M, Hänsch VG, Dunbar KL, Feldmann R, Oberheide A, Seyfarth L, Kumpfmüller J, Horch T, Arndt H, Hertweck C. Enzyme‐Primed Native Chemical Ligation Produces Autoinducing Cyclopeptides in Clostridia. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Evelyn M. Molloy
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Veit G. Hänsch
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Kyle L. Dunbar
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Romy Feldmann
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Ansgar Oberheide
- Institute for Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
| | - Lydia Seyfarth
- Institute for Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
| | - Jana Kumpfmüller
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Therese Horch
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Hans‐Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry Leibniz Institute for Natural, Product Research and Infection Biology HKI Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
9
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
10
|
Molloy EM, Dell M, Hänsch VG, Dunbar KL, Feldmann R, Oberheide A, Seyfarth L, Kumpfmüller J, Horch T, Arndt HD, Hertweck C. Enzyme-Primed Native Chemical Ligation Produces Autoinducing Cyclopeptides in Clostridia. Angew Chem Int Ed Engl 2021; 60:10670-10679. [PMID: 33625794 PMCID: PMC8251862 DOI: 10.1002/anie.202016378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Clostridia coordinate many important processes such as toxin production, infection, and survival by density‐dependent communication (quorum sensing) using autoinducing peptides (AIPs). Although clostridial AIPs have been proposed to be (thio)lactone‐containing peptides, their true structures remain elusive. Here, we report the genome‐guided discovery of an AIP that controls endospore formation in Ruminiclostridium cellulolyticum. Through a combination of chemical synthesis and chemical complementation assays with a mutant strain, we reveal that the genuine chemical mediator is a homodetic cyclopeptide (cAIP). Kinetic analyses indicate that the mature cAIP is produced via a cryptic thiolactone intermediate that undergoes a rapid S→N acyl shift, in a manner similar to intramolecular native chemical ligation (NCL). Finally, by implementing a chemical probe in a targeted screen, we show that this novel enzyme‐primed, intramolecular NCL is a widespread feature of clostridial AIP biosynthesis.
Collapse
Affiliation(s)
- Evelyn M Molloy
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Veit G Hänsch
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Kyle L Dunbar
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Romy Feldmann
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Ansgar Oberheide
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Lydia Seyfarth
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Jana Kumpfmüller
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Therese Horch
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural, Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
11
|
McBrayer DN, Cameron CD, Tal-Gan Y. Development and utilization of peptide-based quorum sensing modulators in Gram-positive bacteria. Org Biomol Chem 2020; 18:7273-7290. [PMID: 32914160 PMCID: PMC7530124 DOI: 10.1039/d0ob01421d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quorum sensing (QS) is a mechanism by which bacteria regulate cell density-dependent group behaviors. Gram-positive bacteria generally rely on auto-inducing peptide (AIP)-based QS signaling to regulate their group behaviors. To develop synthetic modulators of these behaviors, the natural peptide needs to be identified and its structure-activity relationships (SARs) with its cognate receptor (either membrane-bound or cytosolic) need to be understood. SAR information allows for the rational design of peptides or peptide mimics with enhanced characteristics, which in turn can be utilized in studies to understand species-specific QS mechanisms and as lead scaffolds for the development of therapeutic candidates that target QS. In this review, we discuss recent work associated with the approaches used towards forwarding each of these steps in Gram-positive bacteria, with a focus on species that have received less attention.
Collapse
Affiliation(s)
- Dominic N McBrayer
- Department of Chemistry, SUNY New Paltz, 1 Hawk Drive, New Paltz, NY 12561, USA. and Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Crissey D Cameron
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| |
Collapse
|
12
|
Aframian N, Eldar A. A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annu Rev Microbiol 2020; 74:587-606. [PMID: 32680450 DOI: 10.1146/annurev-micro-012220-063740] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing is a process in which bacteria secrete and sense a diffusible molecule, thereby enabling bacterial groups to coordinate their behavior in a density-dependent manner. Quorum sensing has evolved multiple times independently, utilizing different molecular pathways and signaling molecules. A common theme among many quorum-sensing families is their wide range of signaling diversity-different variants within a family code for different signal molecules with a cognate receptor specific to each variant. This pattern of vast allelic polymorphism raises several questions-How do different signaling variants interact with one another? How is this diversity maintained? And how did it come to exist in the first place? Here we argue that social interactions between signaling variants can explain the emergence and persistence of signaling diversity throughout evolution. Finally, we extend the discussion to include cases where multiple diverse systems work in concert in a single bacterium.
Collapse
Affiliation(s)
- Nitzan Aframian
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| | - Avigdor Eldar
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| |
Collapse
|
13
|
Thomas GH. Microbial Musings – June 2020. Microbiology (Reading) 2020; 166:498-500. [PMID: 32633711 PMCID: PMC7376269 DOI: 10.1099/mic.0.000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Feng J, Zong W, Wang P, Zhang ZT, Gu Y, Dougherty M, Borovok I, Wang Y. RRNPP-type quorum-sensing systems regulate solvent formation, sporulation and cell motility in Clostridium saccharoperbutylacetonicum. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:84. [PMID: 32411297 PMCID: PMC7206700 DOI: 10.1186/s13068-020-01723-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Clostridium saccharoperbutylacetonicum N1-4 (HMT) is a strictly anaerobic, spore-forming Gram-positive bacterium capable of hyper-butanol production through the well-known acetone-butanol-ethanol fermentation process. Recently, five putative RRNPP-type QSSs (here designated as QSS1 to QSS5) were predicted in this bacterial strain, each of which comprises a putative RRNPP-type regulator (QssR1 to QssR5) and a cognate signaling peptide precursor (QssP1 to QssP5). In addition, both proteins are encoded by the same operon. The functions of these multiple RRNPP-type QSSs are unknown. RESULTS To elucidate the function of multiple RRNPP-type QSSs as related to cell metabolism and solvent production in N1-4 (HMT), we constructed qssR-deficient mutants ΔR1, ΔR2, ΔR3 and ΔR5 through gene deletion using CRISPR-Cas9 and N1-4-dcas9-R4 (with the QssR4 expression suppressed using CRISPR-dCas9). We also constructed complementation strains by overexpressing the corresponding regulator gene. Based on systematic characterization, results indicate that QSS1, QSS2, QSS3, and QSS5 positively regulate the sol operon expression and thus solvent production, but they likely negatively regulate cell motility. Consequently, QSS4 might not directly regulate solvent production, but positively affect cell migration. In addition, QSS3 and QSS5 appear to positively regulate sporulation efficiency. CONCLUSIONS Our study provides the first insights into the roles of multiple RRNPP-type QSSs of C. saccharoperbutylacetonicum for the regulation of solvent production, cell motility, and sporulation. Results of this study expand our knowledge of how multiple paralogous QSSs are involved in the regulation of essential bacterial metabolism pathways.
Collapse
Affiliation(s)
- Jun Feng
- Department of Biosystems Engineering, Auburn University, 350 Mell Street, Auburn, AL 36849 USA
| | - Wenming Zong
- Department of Biosystems Engineering, Auburn University, 350 Mell Street, Auburn, AL 36849 USA
- School of Engineering, Anhui Agricultural University, Hefei, 230036 China
| | - Pixiang Wang
- Department of Biosystems Engineering, Auburn University, 350 Mell Street, Auburn, AL 36849 USA
| | - Zhong-Tian Zhang
- Department of Biosystems Engineering, Auburn University, 350 Mell Street, Auburn, AL 36849 USA
| | - Yanyan Gu
- Department of Biosystems Engineering, Auburn University, 350 Mell Street, Auburn, AL 36849 USA
| | - Mark Dougherty
- Department of Biosystems Engineering, Auburn University, 350 Mell Street, Auburn, AL 36849 USA
| | - Ilya Borovok
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 6997801 Tel Aviv, Israel
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, 350 Mell Street, Auburn, AL 36849 USA
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849 USA
| |
Collapse
|