Ye M, Jiang Y, Han Q, Li X, Meng C, Ji C, Ji F, Zhou B. Probiotic Potential of
Enterococcus lactis GL3 Strain Isolated from Honeybee (
Apis mellifera L.) Larvae: Insights into Its Antimicrobial Activity Against
Paenibacillus larvae.
Vet Sci 2025;
12:165. [PMID:
40005925 PMCID:
PMC11861324 DOI:
10.3390/vetsci12020165]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to address the need for effective probiotics and antibacterial agents to combat American foulbrood disease in honeybees, caused by Paenibacillus larvae. In the context of declining honeybee populations due to pathogens, we isolated eight lactic acid bacteria (LAB) strains from honeybee larvae (Apis mellifera L.) and evaluated their probiotic potential and inhibitory effects against P. larvae. Methods included probiotic property assessments, such as acid and bile salt resistance, hydrophobicity, auto-aggregation, co-aggregation with P. larvae, antioxidant capacities, osmotolerance to 50% sucrose, and antibiotic susceptibility. Results indicated that the GL3 strain exhibited superior probiotic attributes and potent inhibitory effects on P. larvae. Whole-genome sequencing revealed GL3 to be an Enterococcus lactis strain with genetic features tailored to the honeybee larval gut environment. Pangenome analysis highlighted genetic diversity among E. lactis strains, while molecular docking analysis identified aborycin, a lasso peptide produced by GL3, as a promising inhibitor of bacterial cell wall synthesis. These findings suggested that GL3 was a promising probiotic candidate and antibacterial agent for honeybee health management, warranting further investigation into its in vivo efficacy and potential applications in beekeeping practices.
Collapse