1
|
Ajmi N, Duman M, Coskun B, Esen C, Sonmez O, Tasci G, Coskuner-Weber O, Ay H, Yoyen-Ermis D, Yibar A, Desbois AP, Saticioglu IB. Unraveling Genomic and Pathogenic Features of Aeromonas ichthyocola sp. nov., Aeromonas mytilicola sp. nov., and Aeromonas mytilicola subsp. aquatica subsp. nov. Animals (Basel) 2025; 15:948. [PMID: 40218343 PMCID: PMC11988052 DOI: 10.3390/ani15070948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
The Gram-negative genus Aeromonas contains diverse bacterial species that are prevalent in aquatic environments. This present study describes three novel Aeromonas strains: A. ichthyocola sp. nov. A-5T and A. mytilicola subsp. aquatica subsp. nov. A-8T isolated from rainbow trout (Oncorhynchus mykiss), and A. mytilicola sp. nov. A-7T isolated from mussels (Mytilus galloprovincialis), respectively. Genomic analyses revealed that strains A-5T and A-7T shared the highest 16S rRNA gene sequence similarity with A. rivipollensis P2G1T (99.7% and 99.8%, respectively), while strain A-8T exhibited 99.7% identity with A. media RMT. Together with morphological, physiological, and biochemical data, genome-based analyses provided additional evidence for species differentiation. Digital DNA-DNA hybridization (dDDH; 56.8-65.9%) and average nucleotide identity (ANI; 94.2-95.7%) values fell below the species delineation thresholds, confirming that these isolates represent distinct taxa. Pathogenicity assays using greater wax moth (Galleria mellonella) larvae demonstrated strain-specific virulence profiles. Further genomic analyses identified biosynthetic gene clusters for nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs), which often have roles in secondary metabolite production. Ecological analyses, based on genomic comparisons and metagenomic database searches, revealed the adaptability of the strains to diverse habitats, including freshwater, wastewater, and activated sludge. Based on the genetic and phenotypic data, the novel taxa Aeromonas ichthyocola sp. nov. A-5ᵀ (LMG 33534ᵀ = DSM 117488ᵀ), Aeromonas mytilicola sp. nov. A-7ᵀ (LMG 33536ᵀ = DSM 117490ᵀ), and Aeromonas mytilicola subsp. aquatica subsp. nov. A-8ᵀ (LMG 33537ᵀ = DSM 117493ᵀ) are proposed.
Collapse
Affiliation(s)
- Nihed Ajmi
- Department of Aquatic Animal Diseases, Graduate School of Health Science, Bursa Uludag University, Bursa 16059, Turkey; (N.A.); (G.T.)
| | - Muhammed Duman
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey;
| | - Batuhan Coskun
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (B.C.); (A.P.D.)
| | - Ceren Esen
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa 16059, Turkey; (C.E.); (D.Y.-E.)
| | - Oner Sonmez
- Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey;
| | - Gorkem Tasci
- Department of Aquatic Animal Diseases, Graduate School of Health Science, Bursa Uludag University, Bursa 16059, Turkey; (N.A.); (G.T.)
| | - Orkide Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey;
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Digdem Yoyen-Ermis
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa 16059, Turkey; (C.E.); (D.Y.-E.)
| | - Artun Yibar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey;
| | - Andrew P. Desbois
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (B.C.); (A.P.D.)
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey;
| |
Collapse
|
2
|
Yi X, Xu X, Xu G, Zhang Y, Chen Y, Zhu Z, Guo M. The Sec pathway gene yidC regulates the virulence of mesophilic Aeromonassalmonicida. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109863. [PMID: 39209005 DOI: 10.1016/j.fsi.2024.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas salmonicida is a common pathogenic bacterial species found in both freshwater and marine fish, leading to significant economic losses in the aquaculture industry. YidC is an accessory to SecYEG and is essential for the SecYEG transporter to insert into the bacterial membrane. However, the roles of the yidC gene on the host immune response remain unclear. Here, we compared the pathogenicity of yidC gene-deleted (ΔyidC) strain and wild-type (SRW-OG1) strain of mesophilic A. salmonicida to Orange-spotted grouper (Epinephelus coioides), and explored the impacts of yidC gene on the immune response of E. coioides to mesophilic A. salmonicida infection by using Red/ET recombineering. In this study, the E. coioides in the Secondary infected group had a 53.9 % higher survival rate than those in the Primary infected group. In addition, the adhesion ability of ΔyidC strain decreased by about 83.36 % compared with that of the wild-type (SRW-OG1) strain. Further comparison of the biological phenotype of SRW-OG1 and ΔyidC revealed that this yidC gene could regulate the expression of genes related to iron metabolism and have no effect on bacterial growth under the limited iron concentration. In the low concentration of Fe3+ and Fe2+ environment, SRW-OG1 can obtain iron ions by regulating yidC. Based on the above results, yidC gene contributed to the pathogenicity of mesophilic A. salmonicida to E. coioides, deletion of yidC gene promoted the inflammation and immune response of E. coioides to mesophilic A. salmonicida infection.
Collapse
Affiliation(s)
- Xin Yi
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524000, China
| | - XiaoJin Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry.
| | - Genhuang Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, China.
| | - YuNong Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry
| | - ZhiQin Zhu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry
| | - Minglan Guo
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
3
|
Zhou J, Yu R, Ma Y, Wang Q, Liu Q, Zhang Y, Liu X. A bacterial ghost vaccine against Aeromonas salmonicida infection in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109711. [PMID: 38901685 DOI: 10.1016/j.fsi.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Aeromonas salmonicida is one of the most prevalent pathogens that causes huge economic losses to aquaculture. Effective vaccination is the first choice for preventing infection. Bacterial ghost (BG), an empty bacterial shell devoid of cytoplasm, is a promising vaccine antigen with distinct advantages. Herein, we established strategies for producing a substantial yield of A. salmonicida ghost (ASG) and investigated the immune-protective properties of it. As a result, 2.84 mg/ml NaOH was discovered to be capable of inducing considerable amounts of ASG. Furthermore, the ASG vaccine elicited adaptive immunity in turbots after rapid activation of innate immunity. Even though formalin-killed cells (FKC) produced a few more antibodies than ASG, ASG ultimately provided a much stronger immune protection effect because it strengthened cellular immunity, with a relative percentage survival (RPS) of 50.1 % compared to FKC. These findings demonstrated that ASG effectively activated cell-mediated immunity, which helped get rid of microorganisms inside cells. Therefore, this study presented novel perspectives for future research on furunculosis vaccine products based on ASG as an antigen.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruofan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
4
|
Méndez LR, Rodríguez-Cornejo T, Rodríguez-Ramos T, Al-Hussinee L, Velázquez J, Campbell JH, Carpio Y, Estrada MP, Dixon B. PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109512. [PMID: 38499216 DOI: 10.1016/j.fsi.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | | | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada; Animal Health Laboratory, OVC, Guelph University, Canada
| | - Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
5
|
Olymon K, Yadav M, Teronpi V, Kumar A. Unravelling the genomic secrets of bacterial fish pathogens: a roadmap to aquaculture sustainability. Mol Biol Rep 2024; 51:364. [PMID: 38407655 DOI: 10.1007/s11033-024-09331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
In the field of aquaculture, bacterial pathogens pose significant challenges to fish health and production. Advancements in genomic technologies have revolutionized our understanding of bacterial fish pathogens and their interactions with their host species. This review explores the application of genomic approaches in the identification, classification, and characterization of bacterial fish pathogens. Through an extensive analysis of the literature, we have compiled valuable data on 79 bacterial fish pathogens spanning 13 different phyla, encompassing their whole genome sequences. By leveraging high-throughput sequencing techniques, researchers have gained valuable insights into the genomic makeup of these pathogens, enabling a deeper understanding of their virulence factors and mechanisms of host interaction. Furthermore, genomic approaches have facilitated the discovery of potential vaccine and drug targets, opening up new avenues for the development of effective interventions against fish pathogens. Additionally, the utilization of genomics in fish disease resistance and control in aquaculture has shown promising results, enabling the identification of genetic markers associated with disease resistance traits. This review highlights the significant contributions of genomics to the field of fish pathogen research and underscores its potential for improving disease management strategies and enhancing the sustainability of aquaculture practices.
Collapse
Affiliation(s)
- Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohit Yadav
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Valentina Teronpi
- Department, of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, Assam, 784184, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
6
|
Bergmann L, Balzer Le S, Hageskal G, Preuss L, Han Y, Astafyeva Y, Loevenich S, Emmann S, Perez-Garcia P, Indenbirken D, Katzowitsch E, Thümmler F, Alawi M, Wentzel A, Streit WR, Krohn I. New dienelactone hydrolase from microalgae bacterial community-Antibiofilm activity against fish pathogens and potential applications for aquaculture. Sci Rep 2024; 14:377. [PMID: 38172513 PMCID: PMC10764354 DOI: 10.1038/s41598-023-50734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Biofilms are resistant to many traditional antibiotics, which has led to search for new antimicrobials from different and unique sources. To harness the potential of aquatic microbial resources, we analyzed the meta-omics datasets of microalgae-bacteria communities and mined them for potential antimicrobial and quorum quenching enzymes. One of the most interesting candidates (Dlh3), a dienelactone hydrolase, is a α/β-protein with predicted eight α-helices and eight β-sheets. When it was applied to one of the major fish pathogens, Edwardsiella anguillarum, the biofilm development was reproducibly inhibited by up to 54.5%. The transcriptome dataset in presence of Dlh3 showed an upregulation in functions related to self-defense like active genes for export mechanisms and transport systems. The most interesting point regarding the biotechnological potential for aquaculture applications of Dlh3 are clear evidence of biofilm inhibition and that health and division of a relevant fish cell model (CHSE-214) was not impaired by the enzyme.
Collapse
Affiliation(s)
- Lutgardis Bergmann
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Simone Balzer Le
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Lena Preuss
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yuchen Han
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Simon Loevenich
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sarah Emmann
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Pablo Perez-Garcia
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | | | - Elena Katzowitsch
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Fritz Thümmler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| |
Collapse
|
7
|
Marcoux PÉ, Girard SB, Fournier KC, Tardif CA, Gosselin A, Charette SJ. Interaction of pAsa5 and pAsa8 Plasmids in Aeromonas salmonicida subsp. salmonicida. Microorganisms 2023; 11:2685. [PMID: 38004697 PMCID: PMC10673383 DOI: 10.3390/microorganisms11112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The plasmid known as pAsa5 is present in Aeromonas salmonicida subsp. salmonicida, a fish pathogen. The pAsa5 plasmid carries genes that are essential for the bacterium's virulence. Recombination events are known to occur in pAsa5, resulting in the loss of certain segments or the acquisition of additional genetic elements. For example, the transposon carried by the large pAsa8 plasmid was found to be inserted into the pAsa5 plasmid in the SHY16-3432 strain, enabling the addition of antibiotic resistance genes to this plasmid, which does not normally possess any. In this study, we present the isolation of additional strains carrying pAsa8. Further analyses of these strains revealed that a fusion between pAsa5 and the complete version of pAsa8 is possible. The pAsa8 transposon insertion in pAsa5 seen in the SHY16-3432 strain appears to be an aberrant event compared to the fusion of the two full-length plasmids. A 22-nucleotide sequence, present in both plasmids, serves as the site for the fusion of the two plasmids. Moreover, it is possible to introduce pAsa8 through conjugation into naive strains of A. salmonicida subsp. salmonicida and once the plasmid is within a new strain, the fusion with pAsa5 is detectable. This study reveals a previously unexplored aspect of pAsa5 plasmid biology, highlighting an additional risk for the spread of antibiotic resistance genes in A. salmonicida subsp. salmonicida.
Collapse
Affiliation(s)
- Pierre-Étienne Marcoux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah B. Girard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Kim C. Fournier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Catherine A. Tardif
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Ariane Gosselin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| |
Collapse
|
8
|
Leduc GR, Paquet VE, Piché LC, Vincent AT, Charette SJ. Isolation of vB_AsaM_LPM4 reveals the dynamics of Prophage 3 in Aeromonas salmonicida subsp. salmonicida. Arch Virol 2023; 168:72. [PMID: 36670249 DOI: 10.1007/s00705-022-05623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Aeromonas salmonicida subsp. salmonicida causes furunculosis, a major infection that affects fish farms worldwide. We isolated phage vB_AsaM_LPM4 (LPM4) from a diseased fish. Based on its DNA sequence, LPM4 is identical to the uncharacterized Prophage 3, a prophage present mostly in North American A. salmonicida subsp. salmonicida isolates that bear the genomic island AsaGEI2a. Prophage 3 and AsaGEI2a are inserted side by side in the bacterial chromosome. The LPM4/Prophage 3 sequence is similar to that of other prophages found in various members of the genus Aeromonas. LPM4 specifically infects A. salmonicida subsp. salmonicida strains that do not already bear Prophage 3. The presence of an A-layer on the surface of the bacteria is not necessary for the adsorption of phage LPM4 but seems to facilitate its infection process. We also successfully produced lysogenic strains that bear Prophage 3 using sensitive strains with different genetic backgrounds, suggesting that there is no interdependency between LPM4 and AsaGEIs. PCR analysis of the excision dynamics of Prophage 3 and AsaGEIs revealed that these genetic elements can spontaneously excise themselves from the bacterial chromosome independently of one another. Through the isolation and characterization of LPM4, this study reveals new facets of Prophage 3 and AsaGEIs.
Collapse
Affiliation(s)
- Gabrielle R Leduc
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| | - Laurie C Piché
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.,Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.,Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada. .,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, G1V 0A6, Canada. .,Centre de recherche de l'Institut universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada.
| |
Collapse
|
9
|
Guan Y, Zhang M, Wang Y, Liu Z, Zhao Z, Wang H, An D, Qian A, Kang Y, Sun W, Shan X. Functional analysis of ascP in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence. JOURNAL OF MICROBIOLOGY 2022; 60:1153-1161. [PMCID: PMC9647756 DOI: 10.1007/s12275-022-2373-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yongchao Guan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Meng Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Yingda Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Zhongzhuo Liu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Zelin Zhao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Hong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Dingjie An
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Aidong Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Yuanhuan Kang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Wuwen Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Xiaofeng Shan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| |
Collapse
|
10
|
Enhanced Hemolytic Activity of Mesophilic Aeromonas salmonicida SRW-OG1 Is Brought about by Elevated Temperatures. Microorganisms 2022; 10:microorganisms10102033. [PMID: 36296309 PMCID: PMC9609485 DOI: 10.3390/microorganisms10102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas salmonicida is a well-known cold-water pathogenic bacterium. Previously, we reported the first isolation of pathogenic A. salmonicida from diseased Epinephelus coioides, a kind of warm-water fish, and it was proved to be a putative mesophilic strain with potent pathogenicity to humans. In order to investigate the mechanisms underlying mesophilic growth ability and virulence, the transcriptome of A. salmonicida SRW-OG1 at 18, 28, and 37 °C was analyzed. The transcriptome of A. salmonicida SRW-OG1 at different temperatures showed a clear separation boundary, which might provide valuable information for the temperature adaptation and virulence regulation of A. salmonicida SRW-OG1. Interestingly, aerA and hlyA, the hemolytic genes encoding aerolysin and hemolysin, were found to be significantly up-regulated at 28 and 37 °C. Since aerolysin and hemolysin are the most well-known and -characterized virulence factors of pathogenic Aeromonas strains, the induction of aerA and hlyA was associated with the mesophilic virulence. Further study proved that the extracellular products (ECPs) purchased from A. salmonicida SRW-OG1 cultured at 28 and 37 °C showed elevated hemolytic activity and virulence than those at 18 °C. Moreover, the silence of aerA and hlyA led to significantly decreased hemolysis and virulence. Taken together, our results revealed that the mesophilic virulence of A. salmonicida SRW-OG1 might be due to the enhanced expression of aerA and hlyA induced by elevated temperatures.
Collapse
|
11
|
Fournier KC, Paquet VE, Attéré SA, Farley J, Marquis H, Gantelet H, Ravaille C, Vincent AT, Charette SJ. Expansion of the pRAS3 Plasmid Family in Aeromonas salmonicida subsp. salmonicida and Growing Evidence of Interspecies Connections for These Plasmids. Antibiotics (Basel) 2022; 11:antibiotics11081047. [PMID: 36009916 PMCID: PMC9405359 DOI: 10.3390/antibiotics11081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is a pathogenic bacterium responsible for furunculosis in salmonids. Following an outbreak of furunculosis, the infection can be treated with antibiotics, but it is common to observe ineffective treatment due to antibiotic resistance. This bacterium has a wide variety of plasmids responsible for this resistance. Among them, pRAS3 carries a tetracycline resistance gene. Several variants of this plasmid have been discovered over the years (pRAS3-3432 and pRAS3.1 to 3.4). During the present study, two new variants of the plasmid pRAS3 were identified (pRAS3.5 and pRAS3-3759) in strains of A. salmonicida subsp. salmonicida. Plasmid pRAS3-3759, which has been found in many strains from the same region over the past three years, has an additional genetic element identical to one found in pRAS3-3432. This genetic element was also found in Chlamydia suis, a swine pathogen. In this study, we analyzed the bacteria’s resistance to tetracycline, the number of copies of the plasmids, and the growth of the strains that carry five of the pRAS3 variants (pRAS3.3 to 3.5, pRAS3-3432, and pRAS3-3759). The results show no particular trend despite the differences between the plasmids, except for the resistance to tetracycline when analyzed in an isogenic background. Blast analysis also revealed the presence of pRAS3 plasmids in other bacterial species, which suggests that this plasmid family has widely spread. This study once again highlights the ability of A. salmonicida subsp. salmonicida to adapt to furunculosis antibiotic treatments, and the still-growing family of pRAS3 plasmids.
Collapse
Affiliation(s)
- Kim C. Fournier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (K.C.F.); (V.E.P.); (S.A.A.); (A.T.V.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Valérie E. Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (K.C.F.); (V.E.P.); (S.A.A.); (A.T.V.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| | - Sabrina A. Attéré
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (K.C.F.); (V.E.P.); (S.A.A.); (A.T.V.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Judith Farley
- Aquarium du Québec, Quebec City, QC G1W 4S3, Canada;
| | - Hélène Marquis
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | | | | | - Antony T. Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (K.C.F.); (V.E.P.); (S.A.A.); (A.T.V.)
- Département des Sciences Animales, Faculté des Sciences de L’agriculture et de L’alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (K.C.F.); (V.E.P.); (S.A.A.); (A.T.V.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 406914)
| |
Collapse
|
12
|
Aeromonas: the multifaceted middleman in the One Health world. Curr Opin Microbiol 2021; 65:24-32. [PMID: 34717260 DOI: 10.1016/j.mib.2021.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023]
Abstract
Aeromonas is at the interface of all the One Health components and represents an amazingly sound test case in the One Health approach, from economic loss in aquaculture tochallenges related to antibiotic-resistant bacteria selected from the environment. In human health, infections following leech therapy is an outstanding example of such One Health challenges. Aeromonads are not only ubiquitous environmental bacteria, able to rapidly colonize and cause opportunistic infections in humans and animals, they are also capable of promoting interactions and gene exchanges between the One Health components. This makes this genus a key amplifier of genetic transfer, especially of antibiotic resistance genes.
Collapse
|
13
|
Thomas GH. Microbial Musings – May 2021. Microbiology (Reading) 2021; 167. [PMID: 34100696 PMCID: PMC8290100 DOI: 10.1099/mic.0.001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|