1
|
Xu Z, Li F, Liu Q, Ma T, Feng X, Zhao G, Zeng D, Li D, Jie H. Chemical composition and microbiota changes across musk secretion stages of forest musk deer. Front Microbiol 2024; 15:1322316. [PMID: 38505545 PMCID: PMC10948612 DOI: 10.3389/fmicb.2024.1322316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Forest musk deer is the most important animal for natural musk production, and the musk composition changes periodically during musk secretion, accompanied by variation in the com-position of deer-symbiotic bacteria. GC-MS and 16S rRNA sequencing were conducted in this study, the dynamic changes to correlated chemical composition and the microbiota across musk secretion periods (prime musk secretion period, vigorous musk secretion period and late musk secretion period) were investigated by integrating its serum testosterone level in different mating states. Results showed that the testosterone level, musk composition and microbiota changed with annual cycle of musk secretion and affected by its mating state. Muscone and the testosterone level peaked at vigorous musk secretion period, and the microbiota of this stage was distinct from the other 2 periods. Actinobacteria, Firmicutes and Proteobacteria were dominant bacteria across musk secretion period. PICRUSt analysis demonstrated that bacteria were ubiquitous in musk pod and involved in the metabolism of antibiotics and terpenoids in musk. "Carbohydrates and amino acids," "fatty acids and CoA" and "secretion of metabolites" were enriched at 3 periods, respectively. Pseudomonas, Corynebacterium, Clostridium, Sulfuricurvum were potential biomarkers across musk secretion. This study provides a more comprehensive understanding of genetic mechanism during musk secretion, emphasizing the importance of Actinobacteria and Corynebacterium in the synthesis of muscone and etiocholanone during musk secretion, which required further validation.
Collapse
Affiliation(s)
- Zhongxian Xu
- Sichuan Wildlife Rehabilitation and Breeding Research Center, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feng Li
- Sichuan Wildlife Rehabilitation and Breeding Research Center, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qian Liu
- Sichuan Wildlife Rehabilitation and Breeding Research Center, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Tianyuan Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Feng
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Guijun Zhao
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Dejun Zeng
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hang Jie
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
2
|
Pipite A, Lockhart PJ, McLenachan PA, Christi K, Kumar D, Prasad S, Subramani R. Isolation, antibacterial screening, and identification of bioactive cave dwelling bacteria in Fiji. Front Microbiol 2022; 13:1012867. [PMID: 36605510 PMCID: PMC9807670 DOI: 10.3389/fmicb.2022.1012867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria are well known producers of bioactive secondary metabolites, including some of the most effective antibiotics in use today. While the caves of Oceania are still largely under-explored, they form oligotrophic and extreme environments that are a promising source for identifying novel species of bacteria with biologically active compounds. By using selective media that mimicked a cave environment, and pretreatments that suppressed the growth of fast-growing bacteria, we have cultured genetically diverse bacteria from a limestone cave in Fiji. Partial 16S rRNA gene sequences from isolates were determined and compared with 16S rRNA gene sequences in EzBioCloud and SILVA data bases. Fifty-five isolates purified from culture had Actinomycete-like morphologies and these were investigated for antibacterial activity. Initial screening using a cross streak test with pathogenic bacteria indicated that 34 of the isolates had antibacterial properties. The best matches for the isolates are bacteria with potential uses in the manufacture of antibiotics and pesticides, in bioremediation of toxic waste, in biomining, in producing bioplastics, and in plant growth promotion. Nineteen bacteria were confirmed as Actinomycetes. Thirteen were from the genus Streptomyces and six from genera considered to be rare Actinomycetes from Pseudonocardia, Kocuria, Micromonospora, Nonomuraea. Ten isolates were Firmicutes from the genera Bacillus, Lysinbacillus, Psychrobacillus and Fontibacillus. Two were Proteobacteria from the genera Mesorhizobium and Cupriavidus. Our findings identify a potentially rich source of microbes for applications in biotechnologies.
Collapse
Affiliation(s)
- Atanas Pipite
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji,*Correspondence: Atanas Pipite,
| | - Peter J. Lockhart
- School of Natural Sciences, Massey University, Palmerston North, New Zealand,Peter J. Lockhart,
| | | | - Ketan Christi
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
| | - Dinesh Kumar
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
| | - Surendra Prasad
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
| | - Ramesh Subramani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Suva, Fiji
| |
Collapse
|
3
|
Feeney MA, Newitt JT, Addington E, Algora-Gallardo L, Allan C, Balis L, Birke AS, Castaño-Espriu L, Charkoudian LK, Devine R, Gayrard D, Hamilton J, Hennrich O, Hoskisson PA, Keith-Baker M, Klein JG, Kruasuwan W, Mark DR, Mast Y, McHugh RE, McLean TC, Mohit E, Munnoch JT, Murray J, Noble K, Otani H, Parra J, Pereira CF, Perry L, Pintor-Escobar L, Pritchard L, Prudence SMM, Russell AH, Schniete JK, Seipke RF, Sélem-Mojica N, Undabarrena A, Vind K, van Wezel GP, Wilkinson B, Worsley SF, Duncan KR, Fernández-Martínez LT, Hutchings MI. ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Microb Genom 2022; 8. [PMID: 35775972 PMCID: PMC9455695 DOI: 10.1099/mgen.0.000824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.
Collapse
Affiliation(s)
- Morgan Anne Feeney
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Jake Terry Newitt
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Emily Addington
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Lis Algora-Gallardo
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Craig Allan
- Swansea University Institute of Life Science, College of Medicine, Swansea, Wales, UK
| | - Lucas Balis
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Anna S Birke
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Laia Castaño-Espriu
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | | | - Rebecca Devine
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Damien Gayrard
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jacob Hamilton
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Oliver Hennrich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Paul A Hoskisson
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Molly Keith-Baker
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | | | - Worarat Kruasuwan
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David R Mark
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Yvonne Mast
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Rebecca E McHugh
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Thomas C McLean
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Elmira Mohit
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - John T Munnoch
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Jordan Murray
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Katie Noble
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA 94720, USA
| | - Jonathan Parra
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Camila F Pereira
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Louisa Perry
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - Leighton Pritchard
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Samuel M M Prudence
- School of Biological and Behavioral Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | - Jana K Schniete
- Biology Department, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| | - Ryan F Seipke
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nelly Sélem-Mojica
- Universidad Nacional Autónoma de México, Centro de Ciencias Matemáticas, en Morelia, Michoacán, Mexico
| | - Agustina Undabarrena
- Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Valparaíso, 2340000, Chile
| | - Kristiina Vind
- Host-Microbe Interactomics Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Gilles P van Wezel
- Microbial Biotechnology, Institute of Biology, Leiden University, Rapenburg, The Netherlands
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Katherine R Duncan
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | | | - Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| |
Collapse
|