1
|
Fernandez NL, Simmons LA. Two distinct regulatory systems control pulcherrimin biosynthesis in Bacillus subtilis. PLoS Genet 2024; 20:e1011283. [PMID: 38753885 PMCID: PMC11135676 DOI: 10.1371/journal.pgen.1011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/29/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Regulation of transcription is a fundamental process that allows bacteria to respond to external stimuli with appropriate timing and magnitude of response. In the soil bacterium Bacillus subtilis, transcriptional regulation is at the core of developmental processes needed for cell survival. Gene expression in cells transitioning from exponential phase to stationary phase is under the control of a group of transcription factors called transition state regulators (TSRs). TSRs influence numerous developmental processes including the decision between biofilm formation and motility, genetic competence, and sporulation, but the extent to which TSRs influence bacterial physiology remains to be fully elucidated. Here, we demonstrate two TSRs, ScoC and AbrB, along with the MarR-family transcription factor PchR negatively regulate production of the iron chelator pulcherrimin in B. subtilis. Genetic analysis of the relationship between the three transcription factors indicate that all are necessary to limit pulcherrimin production during exponential phase and influence the rate and total amount of pulcherrimin produced. Similarly, expression of the pulcherrimin biosynthesis gene yvmC was found to be under control of ScoC, AbrB, and PchR and correlated with the amount of pulcherrimin produced by each background. Lastly, our in vitro data indicate a weak direct role for ScoC in controlling pulcherrimin production along with AbrB and PchR. The layered regulation by two distinct regulatory systems underscores the important role for pulcherrimin in B. subtilis physiology.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Fernandez NL, Simmons LA. Two Distinct Regulatory Systems Control Pulcherrimin Biosynthesis in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574033. [PMID: 38260623 PMCID: PMC10802322 DOI: 10.1101/2024.01.03.574033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Regulation of transcription is a fundamental process that allows bacteria to respond to external stimuli with appropriate timing and magnitude of response. In the soil bacterium Bacillus subtilis, transcriptional regulation is at the core of developmental processes needed for cell survival. Gene expression in cells transitioning from exponential phase to stationary phase is under the control of a group of transcription factors called transition state regulators (TSRs). TSRs influence numerous developmental processes including the decision between biofilm formation and motility, genetic competence, and sporulation, but the extent to which TSRs influence bacterial physiology remains to be fully elucidated. Here, we demonstrate two TSRs, ScoC and AbrB, along with the MerR-family transcription factor PchR negatively regulate production of the iron chelator pulcherrimin in B. subtilis. Genetic analysis of the relationship between the three transcription factors indicate that all are necessary to limit pulcherrimin production during exponential phase and influence the rate and total amount of pulcherrimin produced. Similarly, expression of the pulcherrimin biosynthesis gene yvmC was found to be under control of ScoC, AbrB, and PchR and correlated with the amount of pulcherrimin produced by each background. Lastly, our in vitro data indicate a weak direct role for ScoC in controlling pulcherrimin production along with AbrB and PchR. The layered regulation by two distinct regulatory systems underscores the important, and somewhat enigmatic, role for pulcherrimin in B. subtilis physiology.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
3
|
Yamamoto J, Chumsakul O, Toya Y, Morimoto T, Liu S, Masuda K, Kageyama Y, Hirasawa T, Matsuda F, Ogasawara N, Shimizu H, Yoshida KI, Oshima T, Ishikawa S. Constitutive expression of the global regulator AbrB restores the growth defect of a genome-reduced Bacillus subtilis strain and improves its metabolite production. DNA Res 2022; 29:6591218. [PMID: 35608323 PMCID: PMC9160880 DOI: 10.1093/dnares/dsac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Partial bacterial genome reduction by genome engineering can improve the productivity of various metabolites, possibly via deletion of non-essential genome regions involved in undesirable metabolic pathways competing with pathways for the desired end products. However, such reduction may cause growth defects. Genome reduction of Bacillus subtilis MGB874 increases the productivity of cellulases and proteases but reduces their growth rate. Here, we show that this growth defect could be restored by silencing redundant or less important genes affecting exponential growth by manipulating the global transcription factor AbrB. Comparative transcriptome analysis revealed that AbrB-regulated genes were upregulated and those involved in central metabolic pathway and synthetic pathways of amino acids and purine/pyrimidine nucleotides were downregulated in MGB874 compared with the wild-type strain, which we speculated were the cause of the growth defects. By constitutively expressing high levels of AbrB, AbrB regulon genes were repressed, while glycolytic flux increased, thereby restoring the growth rate to wild-type levels. This manipulation also enhanced the productivity of metabolites including γ-polyglutamic acid. This study provides the first evidence that undesired features induced by genome reduction can be relieved, at least partly, by manipulating a global transcription regulation system. A similar strategy could be applied to other genome engineering-based challenges aiming toward efficient material production in bacteria.
Collapse
Affiliation(s)
- Junya Yamamoto
- Graduate School of Science, Technology and Innovation, Kobe University , Nada, Kobe 657-8501, Japan
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology , Ikoma, Nara 630-0192, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University , Suita, Osaka 565-0871, Japan
| | - Takuya Morimoto
- Biological Science Laboratories, Kao Corporation , Akabane, Tochigi 321-3497, Japan
| | - Shenghao Liu
- Biological Science Laboratories, Kao Corporation , Akabane, Tochigi 321-3497, Japan
| | - Kenta Masuda
- Biological Science Laboratories, Kao Corporation , Akabane, Tochigi 321-3497, Japan
| | - Yasushi Kageyama
- Biological Science Laboratories, Kao Corporation , Akabane, Tochigi 321-3497, Japan
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology , Yokohama, Kanagawa 226-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University , Suita, Osaka 565-0871, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology , Ikoma, Nara 630-0192, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University , Suita, Osaka 565-0871, Japan
| | - Ken-ichi Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University , Nada, Kobe 657-8501, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University , Imizu, Toyama 939-0398, Japan
| | - Shu Ishikawa
- Graduate School of Science, Technology and Innovation, Kobe University , Nada, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Han LL, Liu YC, Miao CC, Feng H. Disruption of the pleiotropic gene scoC causes transcriptomic and phenotypical changes in Bacillus pumilus BA06. BMC Genomics 2019; 20:327. [PMID: 31039790 PMCID: PMC6492404 DOI: 10.1186/s12864-019-5671-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/08/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Bacillus pumilus is a Gram-positive and endospore-forming bacterium broadly existing in a variety of environmental niches. Because it produces and secrets many industrially useful enzymes, a lot of studies have been done to understand the underlying mechanisms. Among them, scoC was originally identified as a pleiotropic transcription factor negatively regulating protease production and sporulation in B. subtilis. Nevertheless, its role in B. pumilus largely remains unknown. RESULTS In this study we successfully disrupted scoC gene in B. pumilus BA06 and found increased total extracellular protease activity in scoC mutant strain. Surprisingly, we also found that scoC disruption reduced cell motility possibly by affecting flagella formation. To better understand the underlying mechanism, we performed transcriptome analysis with RNA sequencing. The result showed that more than one thousand genes were alternated at transcriptional level across multiple growth phases, and among them the largest number of differentially expressed genes (DEGs) were identified at the transition time point (12 h) between the exponential growth and the stationary growth phases. In accordance with the altered phenotype, many protease genes especially the aprE gene encoding alkaline protease were transcriptionally regulated. In contrast to the finding in B. subtilis, the aprN gene encoding neutral protease was transcriptionally downregulated in B. pumilus, implicating that scoC plays strain-specific roles. CONCLUSIONS The pleiotropic transcription factor ScoC plays multiple roles in various cellular processes in B. pumilus, some of which were previously reported in B. subtilis. The supervising finding is the identification of ScoC as a positive regulator for flagella formation and bacterial motility. Our transcriptome data may provide hints to understand the underlying mechanism.
Collapse
Affiliation(s)
- Lin-Li Han
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yong-Cheng Liu
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Cui-Cui Miao
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Hong Feng
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Mohr T, Aliyu H, Küchlin R, Zwick M, Cowan D, Neumann A, de Maayer P. Comparative genomic analysis of Parageobacillus thermoglucosidasius strains with distinct hydrogenogenic capacities. BMC Genomics 2018; 19:880. [PMID: 30522433 PMCID: PMC6282330 DOI: 10.1186/s12864-018-5302-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius produces hydrogen gas (H2) by coupling CO oxidation to proton reduction in the water-gas shift (WGS) reaction via a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Although little is known about the hydrogenogenic capacities of different strains of this species, these organisms offer a potentially viable process for the synthesis of this alternative energy source. RESULTS The WGS-catalyzed H2 production capacities of four distinct P. thermoglucosidasius strains were determined by cultivation and gas analysis. Three strains (DSM 2542T, DSM 2543 and DSM 6285) were hydrogenogenic, while the fourth strain (DSM 21625) was not. Furthermore, in one strain (DSM 6285) H2 production commenced earlier in the cultivation than the other hydrogenogenic strains. Comparative genomic analysis of the four strains identified extensive differences in the protein complement encoded on the genomes, some of which are postulated to contribute to the different hydrogenogenic capacities of the strains. Furthermore, polymorphisms and deletions in the CODH-NiFe hydrogenase loci may also contribute towards this variable phenotype. CONCLUSIONS Disparities in the hydrogenogenic capacities of different P. thermoglucosidasius strains were identified, which may be correlated to variability in their global proteomes and genetic differences in their CODH-NiFe hydrogenase loci. The data from this study may contribute towards an improved understanding of WGS-catalysed hydrogenogenesis by P. thermoglucosidasius.
Collapse
Affiliation(s)
- Teresa Mohr
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Habibu Aliyu
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Raphael Küchlin
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Michaela Zwick
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028 South Africa
| | - Anke Neumann
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Pieter de Maayer
- School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, WITS, Johannesburg, 2050 South Africa
| |
Collapse
|
6
|
Yan J, Zou W, Fang J, Huang X, Gao F, He Z, Zhang K, Zhao N. Eukaryote-like Ser/Thr protein kinase PrkA modulates sporulation via regulating the transcriptional factor σ(K) in Bacillus subtilis. Front Microbiol 2015; 6:382. [PMID: 25983726 PMCID: PMC4415436 DOI: 10.3389/fmicb.2015.00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/14/2015] [Indexed: 12/31/2022] Open
Abstract
Protein kinase A (PrkA), also known as AMP-activated protein kinase, functions as a serine/threonine protein kinase (STPK), has been shown to be involved in a variety of important biologic processes, including pathogenesis of many important diseases in mammals. However, the biological functions of PrkA are less known in prokaryote cells. Here, we explored the function of PrkA as well as its underlying molecular mechanisms using the model bacterium Bacillus subtilis168. When PrkA is inhibited by 9-β-D-arabinofuranosyladenine (ara-A) in the wild type strain or deleted in the ΔprkA mutant strain, we observed sporulation defects in B. subtilis 168, suggesting that PrkA functions as a sporulation-related protein. Transcriptional analysis using the lacZ reporter gene demonstrated that deletion of prkA significantly reduced the expression of the transcriptional factor σ(K) and its downstream genes. Complementation of sigK gene in prkA knockout mutant partially rescued the phenotype of ΔprkA, further supporting the hypothesis that the decreased σ(K) expression should be one of the reasons for the sporulation defect resulting from prkA disruption. Finally, our data confirmed that Hpr (ScoC) negatively controlled the expression of transcriptional factor σ(K), and thus PrkA accelerated sporulation and the expression of σ(K) by suppression of Hpr (ScoC). Taken together, our study discovered a novel function of the eukaryotic-like STPK PrkA in spore development as well as its underlying molecular mechanism in B. subtilis.
Collapse
Affiliation(s)
- Jinyuan Yan
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Wei Zou
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Juan Fang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Xiaowei Huang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Feng Gao
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Zeying He
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Keqin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Ninghui Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical College Kunming, China
| |
Collapse
|
7
|
Kodgire P, Rao KK. A dual mode of regulation of flgM by ScoC in Bacillus subtilis. Can J Microbiol 2009; 55:983-9. [PMID: 19898538 DOI: 10.1139/w09-049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Bacillus subtilis, the transition state regulator ScoC indirectly, negatively regulates the anti-sigmaD factor FlgM in a SinR-dependent pathway leading to an increased availability of sigmaD. In addition to the SinR-dependent pathway, ScoC negatively regulates FlgM via directly repressing flgM transcription by binding to two sites in the promoter region of the flgM operon. Our studies also show that the regulation of FlgM by SinR is not at the transcriptional or translational levels. Thus, ScoC shows a dual mode of downregulation of FlgM, via both SinR-dependent and -independent pathways, which eventually results in the increased sigmaD activity.
Collapse
|