1
|
Kotimoole C, Antil N, Kasaragod S, Behera S, Arvind A, Reiling N, Flo T, Prasad T. Development of a spectral library for the discovery of altered genomic events in Mycobacterium avium associated with virulence using mass spectrometry-based proteogenomic analysis. Mol Cell Proteomics 2023; 22:100533. [PMID: 36948415 PMCID: PMC10149365 DOI: 10.1016/j.mcpro.2023.100533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Mycobacterium avium is one of the prominent disease-causing bacteria in humans. It causes lymphadenitis, chronic and extrapulmonary, and disseminated infections in adults, children, and immunocompromised patients. M. avium has ∼4,500 predicted protein-coding regions on average, which can help discover several variants at the proteome level. Many of them are potentially associated with virulence; thus, identifying such proteins can be a helpful feature in developing panel-based theranostics. In line with such a long-term goal, we carried out an in-depth proteomic analysis of M. avium with both data-dependent and data-independent acquisition methods. Further, a set of proteogenomic investigations were carried out using i) a protein database for Mycobacterium tuberculosis, ii) a M. avium genome six-frame translated database, and iii) a variant protein database of M. avium. A search of mass spectrometry data against M. avium protein database resulted in identifying 2,954 proteins. Further, proteogenomic analyses aided in identifying 1,301 novel peptide sequences and correcting translation start sites for 15 proteins. Ultimately, we created a spectral library of M. avium proteins, including novel genome search-specific peptides and variant peptides detected in this study. We validated the spectral library by a data-independent acquisition of the M. avium proteome. Thus, we present an M. avium spectral library of 29,033 peptide precursors supported by 0.4 million fragment ions for further use by the biomedical community.
Collapse
Affiliation(s)
- ChinmayaNarayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Neelam Antil
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sandeep Kasaragod
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - SantoshKumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Anjana Arvind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 22, D-23845 Borstel, Germany; German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - TrudeHelen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Kunnskapssenteret, 424.04.035, Øya, Norway
| | | |
Collapse
|
2
|
Kreitmeier M, Ardern Z, Abele M, Ludwig C, Scherer S, Neuhaus K. Spotlight on alternative frame coding: Two long overlapping genes in Pseudomonas aeruginosa are translated and under purifying selection. iScience 2022; 25:103844. [PMID: 35198897 PMCID: PMC8850804 DOI: 10.1016/j.isci.2022.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
The existence of overlapping genes (OLGs) with significant coding overlaps revolutionizes our understanding of genomic complexity. We report two exceptionally long (957 nt and 1536 nt), evolutionarily novel, translated antisense open reading frames (ORFs) embedded within annotated genes in the pathogenic Gram-negative bacterium Pseudomonas aeruginosa. Both OLG pairs show sequence features consistent with being genes and transcriptional signals in RNA sequencing. Translation of both OLGs was confirmed by ribosome profiling and mass spectrometry. Quantitative proteomics of samples taken during different phases of growth revealed regulation of protein abundances, implying biological functionality. Both OLGs are taxonomically restricted, and likely arose by overprinting within the genus. Evidence for purifying selection further supports functionality. The OLGs reported here, designated olg1 and olg2, are the longest yet proposed in prokaryotes and are among the best attested in terms of translation and evolutionary constraint. These results highlight a potentially large unexplored dimension of prokaryotic genomes.
Collapse
Affiliation(s)
- Michaela Kreitmeier
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
3
|
Deep N-terminomics of Mycobacterium tuberculosis H37Rv extensively correct annotated encoding genes. Genomics 2021; 114:292-304. [PMID: 34915127 DOI: 10.1016/j.ygeno.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (MTB) is a severe causing agent of tuberculosis (TB). Although H37Rv, the type strain of M. tuberculosis was sequenced in 1998, annotation errors of encoding genes have been frequently reported in hundreds of papers. This phenomenon is particularly severe at the 5' end of the genes. Here, we applied a TMPP [(N-Succinimidyloxycarbonylmethyl) tris (2,4,6-trimethoxyphenyl) phosphonium bromide] labeling combined with StageTip separating strategy on M. tuberculosis H37Rv to characterize the N-terminal start sites of its annotated encoding genes. Totally, 1047 proteins were identified with 2058 TMPP labeled N-terminal peptides from all the 2625 mass spectrometer (MS) sequenced proteins. Comparative genomics analysis allowed the re-annotation of 43 proteins' N-termini in H37Rv and 762 proteins in Mycobacteriaceae. All revised N-termini start sites were distributed in 5'-UTR of annotated genes due to over-annotation of previous N-terminal initiation codon, especially the ATG. In addition, we identified and verified a novel gene Rv1078A in +3 frame different from the annotated gene Rv1078 in +2 frame. Altogether, our findings contribute to the better understanding of N-terminal of H37Rv and other species from Mycobacteriaceae that can assist future studies on biological study.
Collapse
|
4
|
Gemayel K, Lomsadze A, Borodovsky M. StartLink and StartLink+: Prediction of Gene Starts in Prokaryotic Genomes. FRONTIERS IN BIOINFORMATICS 2021; 1:704157. [PMID: 36303749 PMCID: PMC9581028 DOI: 10.3389/fbinf.2021.704157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
State-of-the-art algorithms of ab initio gene prediction for prokaryotic genomes were shown to be sufficiently accurate. A pair of algorithms would agree on predictions of gene 3'ends. Nonetheless, predictions of gene starts would not match for 15-25% of genes in a genome. This discrepancy is a serious issue that is difficult to be resolved due to the absence of sufficiently large sets of genes with experimentally verified starts. We have introduced StartLink that infers gene starts from conservation patterns revealed by multiple alignments of homologous nucleotide sequences. We also have introduced StartLink+ combining both ab initio and alignment-based methods. The ability of StartLink to predict the start of a given gene is restricted by the availability of homologs in a database. We observed that StartLink made predictions for 85% of genes per genome on average. The StartLink+ accuracy was shown to be 98-99% on the sets of genes with experimentally verified starts. In comparison with database annotations, we observed that the annotated gene starts deviated from the StartLink+ predictions for ∼5% of genes in AT-rich genomes and for 10-15% of genes in GC-rich genomes on average. The use of StartLink+ has a potential to significantly improve gene start annotation in genomic databases.
Collapse
Affiliation(s)
- Karl Gemayel
- School of Computational Science and Engineering, Georgia Tech, Atlanta, GA, United States
| | - Alexandre Lomsadze
- Wallace H Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, United States
| | - Mark Borodovsky
- School of Computational Science and Engineering, Georgia Tech, Atlanta, GA, United States
- Wallace H Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, United States
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
| |
Collapse
|
5
|
Real-time kinetic studies of Mycobacterium tuberculosis LexA-DNA interaction. Biosci Rep 2021; 41:230259. [PMID: 34792534 PMCID: PMC8607333 DOI: 10.1042/bsr20211419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional repressor, LexA, regulates the ‘SOS’ response, an indispensable bacterial DNA damage repair machinery. Compared with its Escherichia coli ortholog, LexA from Mycobacterium tuberculosis (Mtb) possesses a unique N-terminal extension of additional 24 amino acids in its DNA-binding domain (DBD) and 18 amino acids insertion at its hinge region that connects the DBD to the C-terminal dimerization/autoproteolysis domain. Despite the importance of LexA in ‘SOS’ regulation, Mtb LexA remains poorly characterized and the functional importance of its additional amino acids remained elusive. In addition, the lack of data on kinetic parameters of Mtb LexA–DNA interaction prompted us to perform kinetic analyses of Mtb LexA and its deletion variants using Bio-layer Interferometry (BLI). Mtb LexA is seen to bind to different ‘SOS’ boxes, DNA sequences present in the operator regions of damage-inducible genes, with comparable nanomolar affinity. Deletion of 18 amino acids from the linker region is found to affect DNA binding unlike the deletion of the N-terminal stretch of extra 24 amino acids. The conserved RKG motif has been found to be critical for DNA binding. Overall, the present study provides insights into the kinetics of the interaction between Mtb LexA and its target ‘SOS’ boxes. The kinetic parameters obtained for DNA binding of Mtb LexA would be instrumental to clearly understand the mechanism of ‘SOS’ regulation and activation in Mtb.
Collapse
|
6
|
Gupta A, Alland D. Reversible gene silencing through frameshift indels and frameshift scars provide adaptive plasticity for Mycobacterium tuberculosis. Nat Commun 2021; 12:4702. [PMID: 34349104 PMCID: PMC8339072 DOI: 10.1038/s41467-021-25055-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis can adapt to changing environments by non-heritable mechanisms. Frame-shifting insertions and deletions (indels) may also participate in adaptation through gene disruption, which could be reversed by secondary introduction of a frame-restoring indel. We present ScarTrek, a program that scans genomic data for indels, including those that together disrupt and restore a gene's reading frame, producing "frame-shift scars" suggestive of reversible gene inactivation. We use ScarTrek to analyze 5977 clinical M. tuberculosis isolates. We show that indel frequency inversely correlates with genomic linguistic complexity and varies with gene-position and gene-essentiality. Using ScarTrek, we detect 74 unique frame-shift scars in 48 genes, with a 3.74% population-level incidence of unique scar events. We find multiple scars in the ESX-1 gene cluster. Six scars show evidence of convergent evolution while the rest shared a common ancestor. Our results suggest that sequential indels are a mechanism for reversible gene silencing and adaptation in M. tuberculosis.
Collapse
Affiliation(s)
- Aditi Gupta
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| | - David Alland
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
7
|
Structural insights into chaperone addiction of toxin-antitoxin systems. Nat Commun 2019; 10:782. [PMID: 30770830 PMCID: PMC6377645 DOI: 10.1038/s41467-019-08747-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
SecB chaperones assist protein export by binding both unfolded proteins and the SecA motor. Certain SecB homologs can also control toxin-antitoxin (TA) systems known to modulate bacterial growth in response to stress. In such TA-chaperone (TAC) systems, SecB assists the folding and prevents degradation of the antitoxin, thus facilitating toxin inhibition. Chaperone dependency is conferred by a C-terminal extension in the antitoxin known as chaperone addiction (ChAD) sequence, which makes the antitoxin aggregation-prone and prevents toxin inhibition. Using TAC of Mycobacterium tuberculosis, we present the structure of a SecB-like chaperone bound to its ChAD peptide. We find differences in the binding interfaces when compared to SecB–SecA or SecB-preprotein complexes, and show that the antitoxin can reach a functional form while bound to the chaperone. This work reveals how chaperones can use discrete surface binding regions to accommodate different clients or partners and thereby expand their substrate repertoire and functions. SecB homologs can be associated with stress-responsive type II toxin–antitoxin (TA) systems and form tripartite toxin-antitoxin-chaperone systems (TAC). Here the authors provide structural insights into TACs by presenting the crystal structure of the M. tuberculosis TA-associated SecB chaperone in complex with the C-terminal ChAD (chaperone addiction) extension of the antitoxin HigA1.
Collapse
|
8
|
Chandran AV, Srikalaivani R, Paul A, Vijayan M. Biochemical characterization of Mycobacterium tuberculosisLexA and structural studies of its C-terminal segment. Acta Crystallogr D Struct Biol 2019; 75:41-55. [DOI: 10.1107/s2059798318016066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/13/2018] [Indexed: 03/21/2023] Open
Abstract
LexA is a protein that is involved in the SOS response. The protein fromMycobacterium tuberculosisand its mutants have been biochemically characterized and the structures of their catalytic segments have been determined. The protein is made up of an N-terminal segment, which includes the DNA-binding domain, and a C-terminal segment encompassing much of the catalytic domain. The two segments are defined by a cleavage site. Full-length LexA, the two segments, two point mutants involving changes in the active-site residues (S160A and K197A) and another mutant involving a change at the cleavage site (G126D) were cloned and purified. The wild-type protein autocleaves at basic pH, while the mutants do not. The wild-type and the mutant proteins dimerize and bind DNA with equal facility. The C-terminal segment also dimerizes, and it also shows a tendency to form tetramers. The C-terminal segment readily crystallized. The crystals obtained from attempts involving the full-length protein and its mutants contained only the C-terminal segment including the catalytic core and a few residues preceding it, in a dimeric or tetrameric form, indicating protein cleavage during the long period involved in crystal formation. Modes of tetramerization of the full-length protein similar to those observed for the catalytic core are feasible. A complex ofM. tuberculosisLexA and the cognate SOS box could be modeled in which the mutual orientation of the two N-terminal domains differs from that in theEscherichia coliLexA–DNA complex. These results represent the first thorough characterization ofM. tuberculosisLexA and provide definitive information on its structure and assembly. They also provide leads for further exploration of this important protein.
Collapse
|
9
|
Gong H, Li J, Xu A, Tang Y, Ji W, Gao R, Wang S, Yu L, Tian C, Li J, Yen HY, Man Lam S, Shui G, Yang X, Sun Y, Li X, Jia M, Yang C, Jiang B, Lou Z, Robinson CV, Wong LL, Guddat LW, Sun F, Wang Q, Rao Z. An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science 2018; 362:science.aat8923. [PMID: 30361386 DOI: 10.1126/science.aat8923] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/10/2018] [Indexed: 11/02/2022]
Abstract
We report a 3.5-angstrom-resolution cryo-electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
Collapse
Affiliation(s)
- Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
| | - Ao Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
| | - Wenxin Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruogu Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuhui Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
| | - Lu Yu
- High Magnetic Field Laboratory, CAS, Hefei 230031, China
| | - Changlin Tian
- High Magnetic Field Laboratory, CAS, Hefei 230031, China.,Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jingwen Li
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK
| | - Hsin-Yung Yen
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK.,OMass Technologies, Begbroke Science Park, Woodstock Rd, Yarnton, Kidlington OX5 1PF, UK
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
| | - Yuna Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Minze Jia
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK
| | - Luet-Lok Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Quan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China. .,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.,Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
D’Agostino PM, Gulder TAM. Direct Pathway Cloning Combined with Sequence- and Ligation-Independent Cloning for Fast Biosynthetic Gene Cluster Refactoring and Heterologous Expression. ACS Synth Biol 2018; 7:1702-1708. [PMID: 29940102 DOI: 10.1021/acssynbio.8b00151] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The need for new pharmacological lead structures, especially against drug resistances, has led to a surge in natural product research and discovery. New biosynthetic gene cluster capturing methods to efficiently clone and heterologously express natural product pathways have thus been developed. Direct pathway cloning (DiPaC) is an emerging synthetic biology strategy that utilizes long-amplification PCR and HiFi DNA assembly for the capture and expression of natural product biosynthetic gene clusters. Here, we have further streamlined DiPaC by reducing cloning time and reagent costs by utilizing T4 DNA polymerase (sequence- and ligation-independent cloning, SLIC) for gene cluster capture. As a proof of principle, the majority of the cyanobacterial hapalosin gene cluster was cloned as a single piece (23 kb PCR product) using this approach, and predicted transcriptional terminators were removed by simultaneous pathway refactoring, leading to successful heterologous expression. The complementation of DiPaC with SLIC depicts a time and cost-efficient method for simple capture and expression of new natural product pathways.
Collapse
Affiliation(s)
- Paul M. D’Agostino
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Tobias A. M. Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
11
|
Schwenk S, Moores A, Nobeli I, McHugh TD, Arnvig KB. Cell-wall synthesis and ribosome maturation are co-regulated by an RNA switch in Mycobacterium tuberculosis. Nucleic Acids Res 2018; 46:5837-5849. [PMID: 29618088 PMCID: PMC6009663 DOI: 10.1093/nar/gky226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 01/16/2023] Open
Abstract
The success of Mycobacterium tuberculosis relies on the ability to switch between active growth and non-replicating persistence, associated with latent TB infection. Resuscitation promoting factors (Rpfs) are essential for the transition between these states. Rpf expression is tightly regulated as these enzymes are able to degrade the cell wall, and hence potentially lethal to the bacterium itself. We have identified a regulatory element in the 5' untranslated region (UTR) of rpfB. We demonstrate that this element is a transcriptionally regulated RNA switch/riboswitch candidate, which appears to be restricted to pathogenic mycobacteria, suggesting a role in virulence. We have used translation start site mapping to re-annotate the RpfB start codon and identified and validated a ribosome binding site that is likely to be targeted by an rpfB antisense RNA. Finally, we show that rpfB is co-transcribed with ksgA and ispE downstream. ksgA encodes a universally conserved methyltransferase involved in ribosome maturation and ispE encodes an essential kinase involved in cell wall synthesis. This arrangement implies co-regulation of resuscitation, cell wall synthesis and ribosome maturation via the RNA switch.
Collapse
Affiliation(s)
- Stefan Schwenk
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Alexandra Moores
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Irene Nobeli
- Institute for Structural and Molecular Biology, Birkbeck, London WC1E 7HX, UK
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Royal Free Campus, University College London, London NW3 2QG, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Toxin-Antitoxin Systems in Clinical Pathogens. Toxins (Basel) 2016; 8:toxins8070227. [PMID: 27447671 PMCID: PMC4963858 DOI: 10.3390/toxins8070227] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022] Open
Abstract
Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. Although not essential for normal cell growth, TA systems are implicated in multiple cellular functions associated with survival under stress conditions. Clinical strains of bacteria are currently causing major human health problems as a result of their multidrug resistance, persistence and strong pathogenicity. Here, we present a review of the TA systems described to date and their biological role in human pathogens belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and others of clinical relevance (Escherichia coli, Burkholderia spp., Streptococcus spp. and Mycobacterium tuberculosis). Better understanding of the mechanisms of action of TA systems will enable the development of new lines of treatment for infections caused by the above-mentioned pathogens.
Collapse
|
13
|
Abstract
The identification of translation initiation sites (TISs) constitutes an important aspect of sequence-based genome analysis. An erroneous TIS annotation can impair the identification of regulatory elements and N-terminal signal peptides, and also may flaw the determination of descent, for any particular gene. We have formulated a reference-free method to score the TIS annotation quality. The method is based on a comparison of the observed and expected distribution of all TISs in a particular genome given prior gene-calling. We have assessed the TIS annotations for all available NCBI RefSeq microbial genomes and found that approximately 87% is of appropriate quality, whereas 13% needs substantial improvement. We have analyzed a number of factors that could affect TIS annotation quality such as GC-content, taxonomy, the fraction of genes with a Shine-Dalgarno sequence and the year of publication. The analysis showed that only the first factor has a clear effect. We have then formulated a straightforward Principle Component Analysis-based TIS identification strategy to self-organize and score potential TISs. The strategy is independent of reference data and a priori calculations. A representative set of 277 genomes was subjected to the analysis and we found a clear increase in TIS annotation quality for the genomes with a low quality score. The PCA-based annotation was also compared with annotation with the current tool of reference, Prodigal. The comparison for the model genome of Escherichia coli K12 showed that both methods supplement each other and that prediction agreement can be used as an indicator of a correct TIS annotation. Importantly, the data suggest that the addition of a PCA-based strategy to a Prodigal prediction can be used to ‘flag’ TIS annotations for re-evaluation and in addition can be used to evaluate a given annotation in case a Prodigal annotation is lacking.
Collapse
|
14
|
Staats CC, Junges A, Guedes RLM, Thompson CE, de Morais GL, Boldo JT, de Almeida LGP, Andreis FC, Gerber AL, Sbaraini N, da Paixão RLDA, Broetto L, Landell M, Santi L, Beys-da-Silva WO, Silveira CP, Serrano TR, de Oliveira ES, Kmetzsch L, Vainstein MH, de Vasconcelos ATR, Schrank A. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics 2014; 15:822. [PMID: 25263348 PMCID: PMC4246632 DOI: 10.1186/1471-2164-15-822] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022] Open
Abstract
Background Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. Results We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. Conclusions The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-822) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), P, O, Box 15005, Porto Alegre, RS CEP 91501-970, Brazil.
| |
Collapse
|
15
|
Wu Z, Wu C, Shao J, Zhu Z, Wang W, Zhang W, Tang M, Pei N, Fan H, Li J, Yao H, Gu H, Xu X, Lu C. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA (NEW YORK, N.Y.) 2014; 20:882-898. [PMID: 24759092 PMCID: PMC4024642 DOI: 10.1261/rna.041822.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons. In addition to identifying 29 sRNAs, we show that five sRNA deletion mutants attenuate SS virulence in a zebrafish infection model. Homology searches revealed that 10 sRNAs were predicted to be present in other pathogenic Streptococcus species. Compared with wild-type strain P1/7, sRNAs rss03, rss05, and rss06 deletion mutants were significantly more sensitive to killing by pig blood. It is possible that rss06 contributes to SS virulence by indirectly activating expression of SSU0308, a virulence gene encoding a zinc-binding lipoprotein. In blood, genes involved in the synthesis of capsular polysaccharide (CPS) and subversion of host defenses were up-regulated. In contrast, in CSF, genes for CPS synthesis were down-regulated. Our study is the first analysis of SS sRNAs involved in virulence and has both improved our understanding of SS pathogenesis and increased the number of sRNAs known to play definitive roles in bacterial virulence.
Collapse
Affiliation(s)
- Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Jing Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Weixue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Min Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Na Pei
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | | | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Hongwei Gu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
16
|
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 2014; 6:1002-20. [PMID: 24662523 PMCID: PMC3968373 DOI: 10.3390/toxins6031002] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.
Collapse
|
17
|
Schuessler DL, Cortes T, Fivian-Hughes AS, Lougheed KEA, Harvey E, Buxton RS, Davis EO, Young DB. Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol 2013; 90:195-207. [PMID: 23927792 PMCID: PMC3912914 DOI: 10.1111/mmi.12358] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
Collapse
Affiliation(s)
- Dorothée L Schuessler
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gaudion A, Dawson L, Davis E, Smollett K. Characterisation of the Mycobacterium tuberculosis alternative sigma factor SigG: its operon and regulon. Tuberculosis (Edinb) 2013; 93:482-91. [PMID: 23871545 PMCID: PMC3776920 DOI: 10.1016/j.tube.2013.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/15/2013] [Accepted: 05/19/2013] [Indexed: 01/21/2023]
Abstract
A major step in the pathogenesis of Mycobacterium tuberculosis is the ability to survive inside macrophages, where it is exposed to a number of DNA damaging agents. The alternative sigma factor SigG has been shown to be upregulated by DNA damaging agents and by macrophage infection, but not to regulate genes of the DNA repair pathway. Here we show that SigG is expressed from at least two promoters, the most dominant of these being the DNA damage inducible RecA_Ndp promoter. This promoter is located within the annotated coding region of SigG and so the correct translational start site was determined experimentally and found to be 114 bp downstream of the annotated start site. Examining the gene expression profile of a SigG over-expression strain found a small number of genes to up-regulated, two of these encoded proteins containing glyoxylase-like domains.
Collapse
Affiliation(s)
- Alison Gaudion
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
19
|
Rathor N, Chandolia A, Saini NK, Sinha R, Pathak R, Garima K, Singh S, Varma-Basil M, Bose M. An insight into the regulation of mce4 operon of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2013; 93:389-97. [PMID: 23622789 DOI: 10.1016/j.tube.2013.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/19/2013] [Accepted: 03/30/2013] [Indexed: 01/21/2023]
Abstract
The mce4 operon is reported to be involved in cholesterol utilization and intracellular survival of Mycobacterium tuberculosis (M. tuberculosis). The regulatory mechanism of this important operon was unknown so far. Here we report detection of the promoter region and regulatory factors of the mce4 operon. The in silico analyzed putative promoter region was cloned in promoter selection vector and promoter strength was measured by O-Nitrophenyl-β-D-galactopyranosidase (ONPG) assay. The transcription start site was determined by 5' Rapid amplification of C terminal end (5'RACE). Surface stress, hypoxia and presence of cholesterol, were found to be stimulatory for mce4 operon promoter induction. Pull down assay coupled with 2D gel electrophoresis resolved many proteins; few prominent spots were processed for identification. MALDI TOF-TOF identified proteins of M. tuberculosis which supported the regulatory function of the identified promoter region and cholesterol utilization of mce4 operon. Since mce4 operon is involved in cholesterol utilization and intracellular survival of M. tuberculosis in the later phase of infection, identification of the promoter sequence as reported in the present communication may facilitate development of effective inhibitors to regulate expression of mce4 operon which may prove to be a good drug target to prevent latency in tuberculosis.
Collapse
Affiliation(s)
- Nisha Rathor
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sala A, Calderon V, Bordes P, Genevaux P. TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones. Cell Stress Chaperones 2013; 18:129-35. [PMID: 23264229 PMCID: PMC3581621 DOI: 10.1007/s12192-012-0396-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/27/2023] Open
Abstract
Bacterial type II toxin-antitoxins (TAs) are two-component systems that modulate growth in response to specific stress conditions, thus promoting adaptation and persistence. The major human pathogen Mycobacterium tuberculosis potentially encodes 75 TAs and it has been proposed that persistence induced by active toxins might be relevant for its pathogenesis. In this work, we focus on the newly discovered toxin-antitoxin-chaperone (TAC) system of M. tuberculosis, an atypical stress-responsive TA system tightly controlled by a molecular chaperone that shows similarity to the canonical SecB chaperone involved in Sec-dependent protein export in Gram-negative bacteria. We performed a large-scale genome screening to reconstruct the evolutionary history of TAC systems and found that TAC is not restricted to mycobacteria and seems to have disseminated in diverse taxonomic groups by horizontal gene transfer. Our results suggest that TAC chaperones are evolutionary related to the solitary chaperone SecB and have diverged to become specialized toward their cognate antitoxins.
Collapse
Affiliation(s)
- Ambre Sala
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Virginie Calderon
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires, IBCG, CNRS, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 09, France
| |
Collapse
|
21
|
Reannotation of translational start sites in the genome of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2012; 93:18-25. [PMID: 23273318 DOI: 10.1016/j.tube.2012.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022]
Abstract
Identification and correction of incorrect ORF start sites is important for a variety of experimental and analytical purposes, ranging from cloning to inference of operon structure. The genome of the H37Rv reference strain of Mycobacterium tuberculosis (Mtb) was originally annotated when it was first sequenced nearly 15 years ago. While this annotation has served the TB research community well as a standard of reference for over a decade, it has been demonstrated experimentally that the actual start sites for an estimated 5-10% of open reading frames differ from the annotation. In this paper, we present a comprehensive bioinformatic analysis of all 3989 ORFs (open reading frames) in the M. tuberculosis H37Rv genome. Our method combines information from comparative analysis (alignment to start sites of orthologs in other Actinobacteria), sequence conservation, "protein likeness", putative ribosome binding sites, and other data to identify translational start sites. The features are combined in a linear model that is trained on dataset of known start sites verified by mass spectrometry, with a cross-validated accuracy of 94%. The method can be viewed as an augmentation of Hidden Markov Model-based tools such as Glimmer and GeneMark by incorporating more information than just the raw genomic sequence to decide which position is the legitimate translational start site for each ORF. Using this analysis, we identify 269 genes that most likely need to be re-annotated, and identify the best alterative translational start site for each. These revised ORF definitions could be used in the reannotation of the H37Rv genome, as well as to prioritize genes for experimental start-site validation.
Collapse
|
22
|
Uplekar S, Rougemont J, Cole ST, Sala C. High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Res 2012; 41:961-77. [PMID: 23222129 PMCID: PMC3553938 DOI: 10.1093/nar/gks1260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches: strand-specific RNA-seq, to survey the global transcriptome, and ChIP-seq, to monitor the genome-wide dynamics of RNA polymerase (RNAP) and the anti-terminator NusA. Although NusA does not bind directly to DNA, but rather to RNAP and/or to the nascent transcript, we demonstrate that NusA interacts with RNAP ubiquitously throughout the chromosome, and that its profile mirrors RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the data sets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align.
Collapse
Affiliation(s)
- Swapna Uplekar
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
23
|
Gideon HP, Wilkinson KA, Rustad TR, Oni T, Guio H, Sherman DR, Vordermeier HM, Robertson BD, Young DB, Wilkinson RJ. Bioinformatic and empirical analysis of novel hypoxia-inducible targets of the human antituberculosis T cell response. THE JOURNAL OF IMMUNOLOGY 2012; 189:5867-76. [PMID: 23169589 DOI: 10.4049/jimmunol.1202281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We analyzed whole genome-based transcriptional profiles of Mycobacterium tuberculosis subjected to prolonged hypoxia to guide the discovery of novel potential Ags, by a combined bioinformatic and empirical approach. We analyzed the fold induction of the 100 most highly induced genes at 7 d of hypoxia, as well as transcript abundance, peptide-binding prediction (ProPred) adjusted for population-specific MHC class II allele frequency, and by literature search. Twenty-six candidate genes were selected by this bioinformatic approach and evaluated empirically using IFN-γ and IL-2 ELISPOT using immunodominant Ags (Acr-1, CFP-10, ESAT-6) as references. Twenty-three of twenty-six proteins induced an IFN-γ response in PBMCs of persons with active or latent tuberculosis. Five novel immunodominant proteins-Rv1957, Rv1954c, Rv1955, Rv2022c, and Rv1471-were identified that induced responses similar to CFP-10 and ESAT-6 in both magnitude and frequency. IL-2 responses were of lower magnitude than were those of IFN-γ. Only moderate evidence of infection stage-specific recognition of Ags was observed. Reconciliation of bioinformatic and empirical hierarchies of immunodominance revealed that Ags could be predicted, providing transcriptomic data were combined with peptide-binding prediction adjusted by population-specific MHC class II allele frequency.
Collapse
Affiliation(s)
- Hannah P Gideon
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO. Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem 2012; 287:22004-14. [PMID: 22528497 PMCID: PMC3381160 DOI: 10.1074/jbc.m112.357715] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The DNA damage response is crucial for bacterial survival. The transcriptional repressor LexA is a key component of the SOS response, the main mechanism for the regulation of DNA repair genes in many bacteria. In contrast, in mycobacteria gene induction by DNA damage is carried out by two mechanisms; a relatively small number of genes are thought to be regulated by LexA, and a larger number by an alternate, independent mechanism. In this study we have used ChIP-seq analysis to identify 25 in vivo LexA-binding sites, including nine regulating genes not previously known to be part of this regulon. Some of these binding sites were found to be internal to the predicted open reading frame of the gene they are thought to regulate; experimental analysis has confirmed that these LexA-binding sites regulate the expression of the expected genes, and transcriptional start site analysis has found that their apparent relative location is due to misannotation of these genes. We have also identified novel binding sites for LexA in the promoters of genes that show no apparent DNA damage induction, show positive regulation by LexA, and those encoding small RNAs.
Collapse
Affiliation(s)
- Katherine L Smollett
- Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
25
|
Chang A, Smollett KL, Gopaul KK, Chan BHY, Davis EO. Mycobacterium tuberculosis H37Rv sigC is expressed from two promoters but is not auto-regulatory. Tuberculosis (Edinb) 2011; 92:48-55. [PMID: 22015173 DOI: 10.1016/j.tube.2011.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/15/2011] [Accepted: 09/20/2011] [Indexed: 11/29/2022]
Abstract
The extracytoplasmic function (ECF) sigma factor SigC has been implicated in the pathogenesis of Mycobacterium tuberculosis but control of its expression and activity is poorly understood. No proteins that interact with SigC have been detected leading to the suggestion that this sigma factor may be primarily controlled at the level of transcription. It has been suggested that SigC may be autoregulatory and a role has also been proposed for SigF in the expression of sigC. In this study we identified two promoters that were active under standard growth conditions by a combination of transcript start site mapping and promoter-lacZ fusion assays. The dominant promoter, P1, closely resembled mycobacterial SigA-dependent promoters, and introduction of a single base change at the conserved A of the -10 region eliminated promoter activity. Although the sequence of the other, P2, closely resembled the reported SigC consensus motifs, expression directed by this promoter was unaltered in a ΔsigC mutant strain, or in strains defective in other ECF sigma factors for which some similarity in consensus sequences was apparent. Comparison of the effects of different changes in the -10 region suggested that the P2 promoter was most likely recognised by SigA.
Collapse
Affiliation(s)
- Anchi Chang
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Zougman A, Mann M, Wiśniewski JR. Identification and characterization of a novel ubiquitous nucleolar protein 'NARR' encoded by a gene overlapping the rab34 oncogene. Nucleic Acids Res 2011; 39:7103-13. [PMID: 21586586 PMCID: PMC3167632 DOI: 10.1093/nar/gkr273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 01/08/2023] Open
Abstract
There are only few reports on protein products originating from overlapping mammalian genes even though computational predictions suggest that an appreciable fraction of mammalian genes could potentially overlap. Mass spectrometry-based proteomics has now acquired the tools to probe proteins in an unbiased manner, providing direct evidence of the output of the genomic and gene expression machinery. In particular, proteomics can refine gene predictions and discover novel gene-processing events and gene arrangements. Here, we report the mass spectrometric discovery and biochemical validation of the novel protein encoded by a gene overlapping rab34 oncogene. The novel protein is highly conserved in mammals. In humans, it contains 13 distinct Nine-Amino acid Residue-Repeats (NARR) with the consensus sequence PRVIV(S/T)PR in which the serine or threonine residues are phosphorylated during M-phase. NARR is ubiquitously expressed and resides in nucleoli where it colocalizes with ribosomal DNA (rDNA) gene clusters. Its distribution only partially overlaps with upstream binding factor, one of the main regulators of RNA Polymerase I activity, and is entirely uncoupled from it in mitotic cells and upon inhibition of transcription. NARR only partially colocalizes with fibrillarin, the pre-ribosomal RNA-processing protein, positioning NARR in a separate niche within the rDNA cluster.
Collapse
Affiliation(s)
- Alexandre Zougman
- Max Planck Institute for Biochemistry, Department of Proteomics and Signal Trasduction, Am Klopferspitz 18, Martinsried D 82152, Germany and Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Matthias Mann
- Max Planck Institute for Biochemistry, Department of Proteomics and Signal Trasduction, Am Klopferspitz 18, Martinsried D 82152, Germany and Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jacek R. Wiśniewski
- Max Planck Institute for Biochemistry, Department of Proteomics and Signal Trasduction, Am Klopferspitz 18, Martinsried D 82152, Germany and Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
27
|
SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2011; 108:8438-43. [PMID: 21536872 DOI: 10.1073/pnas.1101189108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A major step in the biogenesis of newly synthesized precursor proteins in bacteria is their targeting to the Sec translocon at the inner membrane. In gram-negative bacteria, the chaperone SecB binds nonnative forms of precursors and specifically transfers them to the SecA motor component of the translocase, thus facilitating their export. The major human pathogen Mycobacterium tuberculosis is an unusual gram-positive bacterium with a well-defined outer membrane and outer membrane proteins. Assistance to precursor proteins by chaperones in this bacterium remains largely unexplored. Here we show that the product of the previously uncharacterized Rv1957 gene of M. tuberculosis can substitute for SecB functions in Escherichia coli and prevent preprotein aggregation in vitro. Interestingly, in M. tuberculosis, Rv1957 is clustered with a functional stress-responsive higB-higA toxin-antitoxin (TA) locus of unknown function. Further in vivo experiments in E. coli and in Mycobacterium marinum strains that do not possess the TA-chaperone locus show that the severe toxicity of the toxin was entirely inhibited when the antitoxin and the chaperone were jointly expressed. We found that Rv1957 acts directly on the antitoxin by preventing its aggregation and protecting it from degradation. Taken together, our results show that the SecB-like chaperone Rv1957 specifically controls a stress-responsive TA system relevant for M. tuberculosis adaptive response.
Collapse
|
28
|
Consistency of gene starts among Burkholderia genomes. BMC Genomics 2011; 12:125. [PMID: 21342528 PMCID: PMC3049151 DOI: 10.1186/1471-2164-12-125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/22/2011] [Indexed: 11/29/2022] Open
Abstract
Background Evolutionary divergence in the position of the translational start site among orthologous genes can have significant functional impacts. Divergence can alter the translation rate, degradation rate, subcellular location, and function of the encoded proteins. Results Existing Genbank gene maps for Burkholderia genomes suggest that extensive divergence has occurred--53% of ortholog sets based on Genbank gene maps had inconsistent gene start sites. However, most of these inconsistencies appear to be gene-calling errors. Evolutionary divergence was the most plausible explanation for only 17% of the ortholog sets. Correcting probable errors in the Genbank gene maps decreased the percentage of ortholog sets with inconsistent starts by 68%, increased the percentage of ortholog sets with extractable upstream intergenic regions by 32%, increased the sequence similarity of intergenic regions and predicted proteins, and increased the number of proteins with identifiable signal peptides. Conclusions Our findings highlight an emerging problem in comparative genomics: single-digit percent errors in gene predictions can lead to double-digit percentages of inconsistent ortholog sets. The work demonstrates a simple approach to evaluate and improve the quality of gene maps.
Collapse
|
29
|
Forse LN, Houghton J, Davis EO. Enhanced expression of recX in Mycobacterium tuberculosis owing to a promoter internal to recA. Tuberculosis (Edinb) 2011; 91:127-35. [PMID: 21251882 PMCID: PMC3062782 DOI: 10.1016/j.tube.2010.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/08/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022]
Abstract
RecX is a small protein that interacts with, and modulates the activity of, RecA protein. In mycobacteria the recX gene is located immediately downstream of the recA gene, and the coding regions overlap. It has previously been shown that these two genes are co-transcribed in Mycobacterium smegmatis. In this study we examine the expression of recX in Mycobacterium tuberculosis. In addition to being co-transcribed with recA from the DNA-damage inducible recA promoters, we identify a constitutive recX promoter located within the recA coding sequence that is strong enough to make a significant contribution to the expression level of recX in the absence of DNA damage. Intriguingly, this promoter is inactivated in M. smegmatis by a critical base change in the -10 promoter motif, which probably accounts for the lower level of expression of recX relative to recA that we observed in that species. It is possible that this difference in relative expression influences RecA functions including the response to DNA damage of LexA-regulated genes.
Collapse
Affiliation(s)
- Lorna N Forse
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
30
|
SigG does not control gene expression in response to DNA damage in Mycobacterium tuberculosis H37Rv. J Bacteriol 2010; 193:1007-11. [PMID: 21169493 DOI: 10.1128/jb.01241-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Expression of the Mycobacterium tuberculosis sigG sigma factor was induced by a variety of DNA-damaging agents, but inactivation of sigG did not affect induction of gene expression or bacterial survival under these conditions. Therefore, SigG does not control the DNA repair response of M. tuberculosis H37Rv.
Collapse
|
31
|
Lew JM, Kapopoulou A, Jones LM, Cole ST. TubercuList--10 years after. Tuberculosis (Edinb) 2010; 91:1-7. [PMID: 20980199 DOI: 10.1016/j.tube.2010.09.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/06/2010] [Accepted: 09/30/2010] [Indexed: 01/10/2023]
Abstract
TubercuList (http://tuberculist.epfl.ch/), the relational database that presents genome-derived information about H37Rv, the paradigm strain of Mycobacterium tuberculosis, has been active for ten years and now presents its twentieth release. Here, we describe some of the recent changes that have resulted from manual annotation with information from the scientific literature. Through manual curation, TubercuList strives to provide current gene-based information and is thus distinguished from other online sources of genome sequence data for M. tuberculosis. New, mostly small, genes have been discovered and the coordinates of some existing coding sequences have been changed when bioinformatics or experimental data suggest that this is required. Nucleotides that are polymorphic between different sources of H37Rv are annotated and gene essentiality data have been updated. A host of functional information has been gleaned from the literature and many new activities of proteins and RNAs have been included. To facilitate basic and translational research, TubercuList also provides links to other specialized databases that present diverse datasets such as 3D-structures, expression profiles, drug development criteria and drug resistance information, in addition to direct access to PubMed articles pertinent to particular genes. TubercuList has been and remains a highly valuable tool for the tuberculosis research community with >75,000 visitors per month.
Collapse
Affiliation(s)
- Jocelyne M Lew
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
32
|
Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis. J Bacteriol 2010; 192:4348-56. [PMID: 20585061 DOI: 10.1128/jb.00454-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial chromosomally encoded type II toxin-antitoxin (TA) loci may be involved in survival upon exposure to stress and have been linked to persistence and dormancy. Therefore, understanding the role of the numerous predicted TA loci within the human pathogen Mycobacterium tuberculosis has become a topic of great interest. Antitoxin proteins are known to autoregulate TA expression under normal growth conditions, but it is unknown whether they have a more global role in transcriptional regulation. This study focuses on analyzing the regulatory role of the M. tuberculosis HigA antitoxin. We first show that the M. tuberculosis higBA locus is functional within its native organism, as higB, higA, and Rv1957 were successfully deleted from the genome together while the deletion of higA alone was not possible. The effects of higB-Rv1957 deletion on M. tuberculosis global gene expression were investigated, and a number of potential HigA-regulated genes were identified. Transcriptional fusion and protein-DNA-binding assays were utilized to confirm the direct role of HigA in Rv1954A-Rv1957 repression, and the M. tuberculosis HigA DNA-binding motif was defined as ATATAGG(N(6))CCTATAT. As HigA failed to bind to the next-most-closely related motif within the M. tuberculosis genome, HigA may not directly regulate any other genes in addition to its own operon.
Collapse
|
33
|
GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010; 7:455-7. [PMID: 20436475 DOI: 10.1038/nmeth.1457] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/26/2010] [Indexed: 11/09/2022]
Abstract
We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.
Collapse
|