1
|
Abstract
Repeated extragenic palindromes (REPs) in the enterobacterial genomes are usually composed of individual palindromic units separated by linker sequences. A total of 355 annotated REPs are distributed along the Escherichia coli genome. RNA sequence (RNAseq) analysis showed that almost 80% of the REPs in E. coli are transcribed. The DNA sequence of REP325 showed that it is a cluster of six repeats, each with two palindromic units capable of forming cruciform structures in supercoiled DNA. Here, we report that components of the REP325 element and at least one of its RNA products play a role in bacterial nucleoid DNA condensation. These RNA not only are present in the purified nucleoid but bind to the bacterial nucleoid-associated HU protein as revealed by RNA IP followed by microarray analysis (RIP-Chip) assays. Deletion of REP325 resulted in a dramatic increase of the nucleoid size as observed using transmission electron microscopy (TEM), and expression of one of the REP325 RNAs, nucleoid-associated noncoding RNA 4 (naRNA4), from a plasmid restored the wild-type condensed structure. Independently, chromosome conformation capture (3C) analysis demonstrated physical connections among various REP elements around the chromosome. These connections are dependent in some way upon the presence of HU and the REP325 element; deletion of HU genes and/or the REP325 element removed the connections. Finally, naRNA4 together with HU condensed DNA in vitro by connecting REP325 or other DNA sequences that contain cruciform structures in a pairwise manner as observed by atomic force microscopy (AFM). On the basis of our results, we propose molecular models to explain connections of remote cruciform structures mediated by HU and naRNA4. Nucleoid organization in bacteria is being studied extensively, and several models have been proposed. However, the molecular nature of the structural organization is not well understood. Here we characterized the role of a novel nucleoid-associated noncoding RNA, naRNA4, in nucleoid structures both in vivo and in vitro. We propose models to explain how naRNA4 together with nucleoid-associated protein HU connects remote DNA elements for nucleoid condensation. We present the first evidence of a noncoding RNA together with a nucleoid-associated protein directly condensing nucleoid DNA.
Collapse
|
2
|
Assessment of expression of Leloir pathway genes in wild-type galactose-fermenting Streptococcus thermophilus by real-time PCR. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2286-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Zi J, Zhang S, Zhou R, Zhou B, Xu S, Hou G, Tan F, Wen B, Wang Q, Lin L, Liu S. Expansion of the Ion Library for Mining SWATH-MS Data through Fractionation Proteomics. Anal Chem 2014; 86:7242-6. [PMID: 24969961 DOI: 10.1021/ac501828a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jin Zi
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Shenyan Zhang
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Ruo Zhou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Baojin Zhou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Shaohang Xu
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Guixue Hou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Fengji Tan
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Bo Wen
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Quanhui Wang
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institutes
of Genomics, Chinese Academy of Sciences, No. 1, Beichen West Rd., Chaoyang District, Beijing,100101, China
| | - Liang Lin
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Siqi Liu
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institutes
of Genomics, Chinese Academy of Sciences, No. 1, Beichen West Rd., Chaoyang District, Beijing,100101, China
| |
Collapse
|
4
|
Thermal stability of glucokinases in Thermoanaerobacter tengcongensis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:646539. [PMID: 24058911 PMCID: PMC3766608 DOI: 10.1155/2013/646539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022]
Abstract
In the genome of Thermoanaerobacter tengcongensis, three genes belonging to ROK (Repressor, ORF, and Kinase) family are annotated as glucokinases (GLKs). Using enzyme assays, the three GLKs were identified as ATP-dependent GLK (ATP-GLK), ADP-dependent GLK (ADP-GLK), and N-acetyl-glucosamine/mannosamine kinase (glu/man-NacK). The kinetic properties of the three GLKs such as Km, Vmax, optimal pH, and temperature were characterized, demonstrating that these enzymes performed the specific functions against varied substrates and under different temperatures. The abundance of ATP-GLK was attenuated when culture temperature was elevated and was almost undetectable at 80°C, whereas the ADP-GLK abundance was insensitive to temperature changes. Using degradation assays, ATP-GLK was found to have significantly faster degradation than ADP-GLK at 80°C. Co-immunoprecipitation results revealed that heat shock protein 60 (HSP60) could interact with ATP-GLK and ADP-GLK at 60 and 75°C, whereas at 80°C, the interaction was only effectively with ADP-GLK but not ATP-GLK. The functions of GLKs in T. tengcongensis are temperature dependent, likely regulated through interactions with HSP60.
Collapse
|
5
|
Tong W, Chen Z, Cao Z, Wang Q, Zhang J, Bai X, Wang R, Liu S. Robustness analysis of a constraint-based metabolic model links cell growth and proteomics of Thermoanaerobacter tengcongensis under temperature perturbation. MOLECULAR BIOSYSTEMS 2013; 9:713-22. [PMID: 23396507 DOI: 10.1039/c3mb25278g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of omic data with metabolic networks has been demonstrated to be an effective approach to elucidate the underlying metabolic mechanisms in life. Because the metabolic pathways of Thermoanaerobacter tengcongensis (T. tengcongensis) are incomplete, we used a 1-(13)C-glucose culture to monitor intracellular isotope-labeled metabolites by GC/MS and identified the gap gene in glucose catabolism, Re-citrate synthase. Based on genome annotation and biochemical information, we reconstructed the metabolic network of glucose metabolism and amino acid synthesis in T. tengcongensis, including 253 reactions, 227 metabolites, and 236 genes. Furthermore, we performed constraint based modeling (CBM)-derived robustness analysis on the model to study the dynamic changes of the metabolic network. By perturbing the culture temperature from 75 to 55 °C, we collected the bacterial growth rates and differential proteomes. Assuming that protein abundance changes represent metabolic flux variations, we proposed that the robustness analysis of the CBM model could decipher the effect of proteome change on the bacterial growth under perturbation. For approximately 73% of the reactions, the predicted cell growth changes due to such reaction flux variations matched the observed cell growth data. Our study, therefore, indicates that differential proteome data can be integrated with metabolic network modeling and that robustness analysis is a strong method for representing the dynamic change in cell phenotypes under perturbation.
Collapse
Affiliation(s)
- Wei Tong
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 101300, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV, Fristensky B, Levin DB, Sparling R. Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production. PLoS One 2013; 8:e59362. [PMID: 23555660 PMCID: PMC3608648 DOI: 10.1371/journal.pone.0059362] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/13/2013] [Indexed: 02/07/2023] Open
Abstract
The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript.
Collapse
Affiliation(s)
- Tobin J. Verbeke
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiangli Zhang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bernard Henrissat
- Centre national de la recherche scientifique, Aix-Marseille Université, Marseille, France
| | - Vic Spicer
- Department of Physics & Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas Rydzak
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oleg V. Krokhin
- Department of Internal Medicine & Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Fristensky
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David B. Levin
- Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
7
|
Regulation of galactose metabolism through the HisK:GalR two-component system in Thermoanaerobacter tengcongensis. J Bacteriol 2010; 192:4311-6. [PMID: 20581213 DOI: 10.1128/jb.00402-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoanaerobacter tengcongensis could utilize galactose as a carbon source via the enzymes encoded by a novel gal operon, whose regulation mechanism has yet to be elucidated. We propose here that the gal operon in T. tengcongensis is regulated through a HisK:GalR two-component system. By using radioactive isotope assay and genetic analysis, we found that the kinase of this system, HisK, is phosphorylated by ATP, and the regulator, GalR, accepts a phosphoryl group during phosphorelay, in which the phosphoryl group at HisK-His-259 is transferred to GalR-Asp-56. Two-dimensional electrophoresis, followed by Western blotting, revealed that phosphorylation status of GalR is uniquely dependent on the galactose stimulus in vivo. Furthermore, DNA pulldown assays demonstrated that the phosphorylated GalR prefers binding to the operator DNA O(2), whereas the unphosphorylated GalR to O(1). A model of HisK:GalR is proposed to explain how galactose mediates the expression of the gal operon in T. tengcongensis.
Collapse
|
8
|
Niou YK, Wu WL, Lin LC, Yu MS, Shu HY, Yang HH, Lin GH. Role of galE on biofilm formation by Thermus spp. Biochem Biophys Res Commun 2009; 390:313-8. [DOI: 10.1016/j.bbrc.2009.09.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/28/2009] [Indexed: 11/30/2022]
|