1
|
Cheng J, Xiao M, Ren X, Secundo F, Yu Y, Nan S, Chen W, Zhu C, Kong Q, Huang Y, Fu X, Mou H. Response of Salmonella enterica serovar Typhimurium to alginate oligosaccharides fermented with fecal inoculum: integrated transcriptomic and metabolomic analyses. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:242-256. [PMID: 37275545 PMCID: PMC10232696 DOI: 10.1007/s42995-023-00176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Alginate oligosaccharides (AOS), extracted from marine brown algae, are a common functional feed additive; however, it remains unclear whether they modulate the gut microbiota and microbial metabolites. The response of Salmonella enterica serovar Typhimurium, a common poultry pathogen, to AOS fermented with chicken fecal inocula was investigated using metabolomic and transcriptomic analyses. Single-strain cultivation tests showed that AOS did not directly inhibit the growth of S. Typhimurium. However, when AOS were fermented by chicken fecal microbiota, the supernatant of fermented AOS (F-AOS) exhibited remarkable antibacterial activity against S. Typhimurium, decreasing the abundance ratio of S. Typhimurium in the fecal microbiota from 18.94 to 2.94%. Transcriptomic analyses showed that the 855 differentially expressed genes induced by F-AOS were mainly enriched in porphyrin and chlorophyll metabolism, oxidative phosphorylation, and Salmonella infection-related pathways. RT-qPCR confirmed that F-AOS downregulated key genes involved in flagellar assembly and the type III secretory system of S. Typhimurium, indicating metabolites in F-AOS can influence the growth and metabolism of S. Typhimurium. Metabolomic analyses showed that 205 microbial metabolites were significantly altered in F-AOS. Among them, the increase in indolelactic acid and 3-indolepropionic acid levels were further confirmed using HPLC. This study provides a new perspective for the application of AOS as a feed additive against pathogenic intestinal bacteria. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00176-z.
Collapse
Affiliation(s)
- Jiaying Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Shihao Nan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047 China
| | - Weimiao Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Youtao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
2
|
Ding Q, Ge C, Baker RC, Buchanan RL, Tikekar RV. The genetic response of Salmonella Typhimurium during trans-cinnamaldehyde assisted heat treatment and its correlation with bacterial resistance in different low moisture food components. Food Microbiol 2023; 113:104271. [PMID: 37098431 DOI: 10.1016/j.fm.2023.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Our previous study found that water activity (aw)- and matrix-dependent bacterial resistance wasdeveloped in Salmonella Typhimurium during antimicrobial-assisted heat treatment in low moisture foods (LMFs) matrices. To better understand the molecular mechanism behind the observed bacterial resistance, gene expression analysis was conducted on S. Typhimurium adapted to different conditions with or without the trans-cinnamaldehyde (CA)-assisted heat treatment via quantitative polymerase chain reaction (qPCR). Expression profiles of nine stress-related genes were analyzed. The upregulation of rpoH and dnaK and downregulation of ompC were observed during bacterial adaptation in LMF matrices and the combined heat treatment, which likely contributed to the bacterial resistance during the combined treatment. Their expression profiles were partially consistent with the previously-observed effect of aw or matrix on bacterial resistance. The upregulation of rpoE, otsB, proV, and fadA was also observed during adaptation in LMF matrices and might contribute to desiccation resistance, but likely did not contribute to bacterial resistance during the combined heat treatment. The observed upregulation of fabA and downregulation of ibpA could not be directly linked to bacterial resistance to either desiccation or the combined heat treatment. The results may assist the development of more efficient processing methods against S. Typhimurium in LMFs.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, 101047, China
| | | | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA, 20742
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742.
| |
Collapse
|
3
|
Gil-Marqués ML, Pachón J, Smani Y. iTRAQ-Based Quantitative Proteomic Analysis of Acinetobacter baumannii under Hypoxia and Normoxia Reveals the Role of OmpW as a Virulence Factor. Microbiol Spectr 2022; 10:e0232821. [PMID: 35234505 PMCID: PMC8941935 DOI: 10.1128/spectrum.02328-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii needs to adapt to hypoxia during infection. Understanding its proteome regulation during infection would allow us to determine new targets to develop novel treatments. iTRAQ proteomic analysis of A549 cell infection by the ATCC 17978 strain was performed. A total of 175 proteins were differentially expressed under hypoxia versus normoxia. We selected the hypoxia-downregulated protein OmpW to analyze its role as a virulence factor. The loss of OmpW decreased the adherence and invasion of A. baumannii in these host cells, without affecting its bacterial growth. Moreover, A549 cell viability with ΔOmpW infection was higher than that with the wild-type strain. ΔOmpW presented less biofilm formation. Finally, the minimum lethal dose required by the ΔOmpW mutant was higher than that of the wild-type strain in a murine peritoneal sepsis model, with lower bacterial loads in tissues and fluids. Therefore, OmpW seems to be a virulence factor necessary for A. baumannii pathogenesis. IMPORTANCE Acinetobacter baumannii causes infections that are very difficult to treat due to the high rate of resistance to most and sometimes all of the antimicrobials used in the clinical setting. There is an important need to develop new strategies to combat A. baumannii infections. One alternative could be blocking specific bacterial virulence factors that this pathogen needs to infect cells. Pathogens modulate their protein expression as a function of the environment, and several studies have reported that hypoxia occurs in a wide range of infections. Therefore, it would be interesting to determine the proteome of A. baumannii under hypoxia in order to find new virulence factors, such as the outer membrane protein OmpW, as potential targets for the design of novel therapies.
Collapse
Affiliation(s)
- María Luisa Gil-Marqués
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Medicine, University of Seville, Sevilla, Spain
| | - Younes Smani
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| |
Collapse
|
4
|
Xu Y, You G, Zhang M, Peng D, Jiang Z, Qi S, Yang S, Hou J. Antibiotic resistance genes alternation in soils modified with neutral and alkaline salts: interplay of salinity stress and response strategies of microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152246. [PMID: 34896144 DOI: 10.1016/j.scitotenv.2021.152246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Growing evidence points to the pivotal roles of salt accumulation in mediating antibiotic resistance genes (ARGs) spread in soil, whereas how salt mediates ARGs dissemination remains unknown. Herein, the effects of neutral or alkaline (Ne/Al) salt at low, moderate and high levels (Ne/Al-L, Ne/Al-M, Ne/Al-H) on the dissemination of ten typical ARGs in soils were explored, by simultaneously considering the roles of salinity stress and response strategies of microbes. In the soils amended with Ne/Al-L and Al-M salt, the dissemination of ARGs was negligible and the relative abundances of ARGs and mobile genetic elements (MGEs) were decreased. However, Ne-M and Al-H salt contributed to the dissemination of ARGs in soils, with the significantly increased absolute and relative abundances of ARGs and MGEs. In Ne-H soil, although the absolute abundance of ARGs declined drastically due to serious oxidative damage, their relative abundances were promoted. The facilitated ARGs transfer was potentially related to the excessive generation of intracellular reactive oxygen species and increased activities of DNA repair enzymes involved in SOS system. In addition, the activated intracellular protective response including quorum sensing and energy metabolism largely provided essential factors for ARGs dissemination. The co-occurrence of ARGs and over-expressed salt-tolerant genes in specific halotolerant bacteria further suggested the selection of salt stress on ARGs. Moreover, less disturbance of alkaline salt than neutral salt on ARGs evolution was observed, due to the lower abiotic stress and selective pressure on microbes. This study highlights that soil salinity-sodicity could dose-dependently reshape the dissemination of ARGs and community structure of microbes, which may increase the ecological risks of ARGs in agricultural environment.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| | - Mairan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Dengyun Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Suting Qi
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, PR China, 210098; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| |
Collapse
|
5
|
WANG LITING, HONG HOUSHENG, ZHANG CHENGBO, HUANG ZUNXI, GUO HUIMING. Transcriptome Analysis of Komagataeibacter europaeus CGMCC 20445 Responses to Different Acidity Levels During Acetic Acid Fermentation. Pol J Microbiol 2021; 70:305-313. [PMID: 34584524 PMCID: PMC8459000 DOI: 10.33073/pjm-2021-027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 01/13/2023] Open
Abstract
In the industrial production of high-acidity vinegar, the initial ethanol and acetic acid concentrations are limiting factors that will affect acetic acid fermentation. In this study, Komagataeibacter europaeus CGMCC 20445 was used for acetic acid shake flask fermentation at an initial ethanol concentration of 4.3% (v/v). We conducted transcriptome analysis of K. europaeus CGMCC 20445 samples under different acidity conditions to elucidate the changes in differentially expressed genes throughout the fermentation process. We also analyzed the expression of genes associated with acid-resistance mechanisms. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the differentially expressed genes were enriched in ribosomes, citrate cycle, butanoate metabolism, oxidative phosphorylation, pentose phosphate, and the fatty acid biosynthetic pathways. In addition, this study found that K. europaeus CGMCC 20445 regulates the gene expression levels of cell envelope proteins and stress-responsive proteins to adapt to the gradual increase in acidity during acetic acid fermentation. This study improved the understanding of the acid resistance mechanism of K. europaeus and provided relevant reference information for the further genetic engineering of this bacterium.
Collapse
Affiliation(s)
- LITING WANG
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - HOUSHENG HONG
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - CHENGBO ZHANG
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - ZUNXI HUANG
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - HUIMING GUO
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
6
|
Xu Y, Yang S, You G, Hou J. Antibiotic resistance genes attenuation in anaerobic microorganisms during iron uptake from zero valent iron: An iron-dependent form of homeostasis and roles as regulators. WATER RESEARCH 2021; 195:116979. [PMID: 33690012 DOI: 10.1016/j.watres.2021.116979] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Zero valent iron (ZVI) has been previously documented to attenuate the propagation of antibiotic resistance genes (ARGs) in microbes, while how ZVI affects the evolution of ARGs remains unclear. Herein, we investigated the influences of ZVI on ARGs dissemination in anaerobic bioreactor treating oxytetracycline (tet) containing wastewater, by deciphering the roles of iron homeostasis and regulatory effects. A net reduction of tet gene targets ranging from 0.75 to 1.88 and 0.67 to 2.08 log unit in intracellular and extracellular DNA was achieved at the optimal dosage of 5 g/L ZVI, whereas 20 g/L ZVI made no effects on ARGs reduction. The reduced ARGs abundance by ZVI was directly related to the inhibited horizontal transfer of ARGs and decreased proliferation of resistant strains (mainly Paludibacter and WCHB1-32). The potential mechanisms included the increased antioxidant capacity, the depressed efflux pump system and the weakened energy driving force by Fur regulon in microbes (especially for Cloacibacterium and Dechloromonas). The negligible influence of 20 g/L ZVI on ARGs reduction was ascribed to the iron-catalyzed oxidative damage and reduced physiological activity. This study firstly illustrated the potential relationships among activation of iron uptake regulator leading to protection against oxidative stress, alternation of physiological metabolisms and reduction of ARGs dissemination. This work extents our understanding about the priority of ZVI in mitigating ARGs proliferation and sheds light on its potential application in wastewater treatment plants.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing, 210098, PR China; Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shihong Yang
- College of Agricultural Engineering, Hohai University, Nanjing, 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| |
Collapse
|
7
|
Puławska J, Kałużna M, Warabieda W, Pothier JF, Gétaz M, van der Wolf JM. Transcriptome analysis of Xanthomonas fragariae in strawberry leaves. Sci Rep 2020; 10:20582. [PMID: 33239704 PMCID: PMC7688646 DOI: 10.1038/s41598-020-77612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Xanthomonas fragariae is a quarantine bacterial pathogen that causes angular leaf spot on strawberry. The aim of our study was to analyse the mechanism of interaction of this bacterium with its host plant at the transcriptome level. For this purpose, mRNAs of X. fragariae growing in Wilbrink’s medium and from infected strawberry cv. Elsanta plants were isolated and sequenced using the Illumina MiSeq platform. The expression profiles of the bacteria in Wilbrink’s medium and in planta were very diverse. Of the 3939 CDSs recorded, 1995 had significantly different expression in planta (966 and 1029 genes were down- and upregulated, respectively). Among the genes showing increased expression in planta, those with eggNOG/COG (evolutionary genealogy of genes: Non-supervised Orthologous Groups/Cluster of Orthologous Groups) categories associated with bacterial cell motility, signal transduction, transport and metabolism of inorganic ions and carbohydrates and transcription were overrepresented. Among the genes with the most increased expression in planta, genes primarily associated with flagella synthesis and chemotaxis were found. It is also interesting to note that out of the 31 genes localized on a plasmid, 16 were expressed differently in planta, which may indicate their potential role in plant–pathogen interactions. Many genes with differentiated expression that were localized on chromosome and plasmid encode proteins of unknown function.
Collapse
Affiliation(s)
- Joanna Puławska
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland.
| | - Monika Kałużna
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - Wojciech Warabieda
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Michael Gétaz
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | | |
Collapse
|
8
|
SoxS is a positive regulator of key pathogenesis genes and promotes intracellular replication and virulence of Salmonella Typhimurium. Microb Pathog 2019; 139:103925. [PMID: 31838175 DOI: 10.1016/j.micpath.2019.103925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important intracellular pathogen, causing gastroenteritis or severe systemic infection in a variety of hosts. During infection, S. Typhimurium must survive and replicate in host macrophages, which produce abundant oxidative compounds. SoxRS regulon is a well-known regulator that is activated in response to oxidative stress and promotes bacterial tolerance to oxidants in E. coli. However, the global regulatory function of SoxS in S. Typhimurium remains poorly characterized. Here, we used an RNA sequencing-based approach to investigate the role of SoxS in the expression of S. Typhimurium virulence genes. Besides the downregulation of genes related to resistance to oxidative stress, we found that in a soxS deletion mutant the expression of Salmonella pathogenicity island (SPI)-2 genes, which are crucial for replication within macrophages, was significantly repressed. Moreover, immunofluorescence and mice infection experiments showed that soxS deletion inhibited replication in macrophages and decreased virulence upon intraperitoneal inoculation in mice, respectively. Collectively, our findings demonstrate that SoxS is a positive regulator of SPI-2 genes and, therefore, plays a crucial role in S. Typhimurium intracellular replication and virulence.
Collapse
|
9
|
Zhang P, Ye Z, Ye C, Zou H, Gao Z, Pan J. OmpW is positively regulated by iron via Fur, and negatively regulated by SoxS contribution to oxidative stress resistance in Escherichia coli. Microb Pathog 2019; 138:103808. [PMID: 31634530 DOI: 10.1016/j.micpath.2019.103808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Iron plays a central role at the interface of pathogen and host. The ability to sequester iron from a host not only reduces host immune defenses but also promotes pathogen virulence, leading to the occurrence of infectious disease. Recently, outer membrane protein OmpW was shown to protect bacteria against harsh environmental conditions and to play a role in infectious disease. The expression of this versatile protein is controlled by iron, but the underlying mechanism of iron regulation has not been elucidated. In this study, the relation between OmpW expression and iron was investigated. Our results demonstrated that expression of OmpW is responsive to iron. Iron uptake analysis showed that an ompW mutant strain has a strong requirement for iron as compared to wild type and the ompW complemented strain. Moreover, ferric uptake regulation protein Fur, an iron binding transcriptional factor, was downregulated under iron limitation conditions and had a similar expression profile to OmpW in the presence or absence of iron. Based on these results, we suggest that iron regulates OmpW by binding to Fur. Furthermore, SoxS, a transcriptional factor involved in oxidative stress, was found to negatively regulate OmpW. We found that downregulating or knocking out OmpW results in bacterial resistance to oxidative stress. These findings provide new insight into the regulation of OmpW expression by iron, and may represent a new mechanism contributing to iron-mediated infectious disease.
Collapse
Affiliation(s)
- Pengfei Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhicang Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chen Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haijie Zou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhichao Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianyi Pan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Quantitative assessment of tolerance response to stress after exposure to oregano and rosemary essential oils, carvacrol and 1,8-cineole in Salmonella Enteritidis 86 and its isogenic deletion mutants ∆dps, ∆rpoS and ∆ompR. Food Res Int 2019; 122:679-687. [PMID: 31229127 DOI: 10.1016/j.foodres.2019.01.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 01/08/2023]
Abstract
This study assessed the influence of rpoS, dps and ompR genes on the tolerance response of Salmonella Enteritidis 86 (SE86) to homologous and heterologous stressing agents after exposure to essential oils (EOs) from Origanum vulgare L. (oregano; OVEO) and Rosmarinus officinalis L. (rosemary; ROEO) and their major constituents (ICs), carvacrol (CAR) and 1,8-cineole (CIN), respectively, by modelling the log reduction over time. Minimum inhibitory concentration values of OVEO (1.25 μL/mL), CAR (0.62 μL/mL), ROEO (20 μL/mL) and CIN (10 μL/mL) against SE86 were always one-fold higher than those against ∆dps, ∆rpoS and ∆ompR mutants. Exposure to the same concentration of OVEO, CAR, ROEO or CIN caused higher reductions (up to 2.5 log CFU/mL) in ∆dps, ∆rpoS and ∆ompR mutants than in SE86 in chicken broth. In assays with homologous stressing agents, ompR, dps and rpoS influenced the tolerance to OEs or ICs. After adaptation to OVEO, CAR, ROEO and CIN, osmotolerance and acid tolerance of SE86 were influenced by rpoS gene, while thermotolerance of SE86 was influenced by ompR. Tolerance of SE86 to sodium hypochlorite after adaptation to OEs or ICs was influenced by rpoS and dps. These findings quantitatively describe for the first time the influence of rpoS, dps and ompR genes on the tolerance of Salmonella Enteritidis to OVEO, CAR, ROEO and CIN.
Collapse
|
11
|
Zhang X, Gao J, Ling N, Zeng H, Tong L, Zhang M, Zhang J, Wu Q, Ye Y. Short communication: Roles of outer membrane protein W on survival, cellular morphology, and biofilm formation of Cronobacter sakazakii in response to oxidative stress. J Dairy Sci 2019; 102:2017-2021. [PMID: 30638998 DOI: 10.3168/jds.2018-14643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022]
Abstract
Cronobacter species are a group of opportunistic food-borne pathogens that cause rare but severe infections in neonates. Tolerance to environmental stress in Cronobacter is known; however, factors involved in oxidative stress are undefined. In this study, Cronobacter sakazakii survival, cellular morphology, and biofilm formation in response to oxidative stress were evaluated between the wild type (WT) and an outer membrane protein W (OmpW) mutant. The survival rates of ΔOmpW strain after treatment with 1.0 and 1.5 mM hydrogen peroxide were significantly reduced compared with those of WT. Morphological changes, including cell membrane damage and cell fragmentation, in ΔOmpW were more predominant than those in WT. By crystal violet staining, we also observed increased biomass in ΔOmpW biofilms as compared with WT following treatment with 0.5 and 1.0 mM H2O2. Biofilms using scanning electron microscopy and confocal laser scanning microscopy further confirmed the structural changes of biofilms between WT and ΔOmpW in response to oxidative stress. The current findings show that OmpW contributed to survival of planktonic cells under oxidative stress and the deletion of OmpW facilitated the biofilm formation in C. sakazakii to adapt to oxidative stress.
Collapse
Affiliation(s)
- Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Jina Gao
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Liaowang Tong
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Maofeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
12
|
Fang H, Liu L, Zhang Y, Yang H, Yan Y, Ding X, Han Y, Zhou D, Yang R. BfvR, an AraC-Family Regulator, Controls Biofilm Formation and pH6 Antigen Production in Opposite Ways in Yersinia pestis Biovar Microtus. Front Cell Infect Microbiol 2018; 8:347. [PMID: 30333962 PMCID: PMC6176095 DOI: 10.3389/fcimb.2018.00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation is critical for blocking flea foregut and hence for transmission of Y. pestis by flea biting. In this study, we identified the regulatory role of the AraC-family transcriptional regulator BfvR (YPO1737 in strain CO92) in biofilm formation and virulence of Yersinia pestis biovar Microtus. Crystal violet staining, Caenorhabditis elegans biofilm assay, colony morphology assay, intracellular c-di-GMP concentration determination, and BALB/c mice challenge were employed to reveal that BfvR enhanced Y. pestis biofilm formation while repressed its virulence in mice. Further molecular biological assays demonstrated that BfvR directly stimulated the expression of hmsHFRS, waaAE-coaD, and hmsCDE, which, in turn, affected the production of exopolysaccharide, LPS, and c-di-GMP, respectively. In addition, BfvR directly and indirectly repressed psaABC and psaEF transcription, respectively. We concluded that the modulation of biofilm- and virulence-related genes by BfvR led to increased biofilm formation and reduced virulence of Y. pestis biovar Microtus.
Collapse
Affiliation(s)
- Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Division of Biology, Beijing Academy, Beijing, China
| | - Lei Liu
- Department of Blood Transfusion, Wuhan General Hospital of PLA, Wuhan, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaojuan Ding
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
13
|
Kollanoor Johny A, Frye JG, Donoghue A, Donoghue DJ, Porwollik S, McClelland M, Venkitanarayanan K. Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol. Front Microbiol 2017; 8:1828. [PMID: 29018419 PMCID: PMC5623010 DOI: 10.3389/fmicb.2017.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Background:Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two plant-derived compounds generally recognized as safe (GRAS), trans-cinnamaldehyde (TC), and eugenol (EG), significantly reduced S. Enteritidis colonization in broiler and layer chickens. To elucidate potential PT8 genes affected by TC and EG during colonization, a whole-genome microarray analysis of the bacterium treated with TC and EG was conducted. Results:S. Enteritidis PT8 was grown in Luria-Bertani broth at 37°C to an OD600 of ~0.5. Subinhibitory concentrations (SICs; concentration that does not inhibit bacterial growth) of TC (0.01%; 0.75 mM) or EG (0.04%; 2.46 mM) were then added to the culture. S. Enteritidis PT8 RNA was extracted before and 30 min after TC or EG addition. Labeled cDNA from three replicate experiments was subsequently hybridized to a microarray of over 99% of S. Enteritidis PT4 genes, and the hybridization signals were quantified. The plant-derived compounds down-regulated (P < 0.005) expression of S. Enteritidis PT8 genes involved in flagellar motility, regulation of the Salmonella Pathogenicity Island 1, and invasion of intestinal epithelial cells. TC and EG also suppressed transcription of genes encoding multiple transport systems and outer membrane proteins. Moreover, several metabolic and biosynthetic pathways in the pathogen were down-regulated during exposure to the plant-derived compounds. Both TC and EG stimulated the transcription of heat shock genes, such as dnaK, dnaJ, ibpB, and ibpA in S. Enteritidis PT8 (P < 0.005). The results obtained from microarray were validated using a quantitative real-time PCR. Conclusion: The plant-derived compounds TC and EG exert antimicrobial effects on S. Enteritidis PT8 by affecting multiple genes, including those associated with virulence, colonization, cell membrane composition, and transport systems.
Collapse
Affiliation(s)
- Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN, United States
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Richard B. Russell Research Center, Athens, GA, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, USDA, Fayetteville, AR, United States
| | - Dan J Donoghue
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
14
|
Yu X, Jiang J, Liang C, Zhang X, Wang J, Shen D, Feng Y. Indole affects the formation of multicellular aggregate structures in Pantoea agglomerans YS19. J GEN APPL MICROBIOL 2016; 62:31-7. [DOI: 10.2323/jgam.62.31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xuemei Yu
- School of Life Science, Beijing Institute of Technology
| | - Jing Jiang
- School of Life Science, Beijing Institute of Technology
| | - Chen Liang
- School of Life Science, Beijing Institute of Technology
| | - Xiao Zhang
- School of Life Science, Beijing Institute of Technology
| | - Jieru Wang
- School of Life Science, Beijing Institute of Technology
| | - Delong Shen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
15
|
Identification of DLD, by immunoproteomic analysis and evaluation as a potential vaccine antigen against three Vibrio species in Epinephelus coioides. Vaccine 2015; 34:1225-31. [PMID: 26562319 DOI: 10.1016/j.vaccine.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/28/2015] [Accepted: 11/01/2015] [Indexed: 11/20/2022]
Abstract
Vibrio spp. represent a serious threat to the culture of Epinephelus coioides (Orange-spotted Grouper) in Southeast Asia. In this study we used two-dimensional electrophoresis (2-DE) and Western blotting to identify common immunogenic proteins of Vibrio alginolyticus, Vibrio harveyi and Vibrio parahaemolyticus. Membranes were probed with orange-spotted grouper anti-V. alginolyticus sera and accordingly 60, 58 and 48 immunogenic protein spots were detected. By matching analysis for the three Western blotting membranes, 6 cross immunogenic spots for the three Vibrio species were identified. They were Outer membrane protein W (OmpW), dihydrolipoamide dehydrogenase (DLD), succinate dehydrogenase flavoprotein subunit(SDHA), elongation factor Ts(Ts), peptide ABC transporter periplasmic peptide-binding protein and phosphoenolpyruvate carboxykinase(PEPCK). One of the proteins, DLD, was used to evaluate the cross protective function for E. coioides with a bacterial immunization and challenge method. The relative percent survival rate of E. coioides against V. alginolyticus, V. harveyi and V. parahaemolyticus was 90%, 86% and 80%, respectively. This work may provide potential cross protective vaccine candidate antigens for three Vibrio species, and DLD may be considered as an effective cross-protective immunogen against three Vibrio species.
Collapse
|
16
|
Abrashev R, Krumova E, Dishliska V, Eneva R, Engibarov S, Abrashev I, Angelova M. Differential Effect of Paraquat and Hydrogen Peroxide on the Oxidative Stress Response inVibrio CholeraeNon O1 26/06. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C, Ottado J, Gottig N. Insights into xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 2013; 13:186. [PMID: 23924281 PMCID: PMC3750573 DOI: 10.1186/1471-2180-13-186] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.
Collapse
Affiliation(s)
- Tamara Zimaro
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Ocampo y Esmeralda, Rosario, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
18
|
Guerrero P, Collao B, Álvarez R, Salinas H, Morales EH, Calderón IL, Saavedra CP, Gil F. Salmonella enterica serovar Typhimurium BaeSR two-component system positively regulates sodA in response to ciprofloxacin. MICROBIOLOGY-SGM 2013; 159:2049-2057. [PMID: 23918818 PMCID: PMC3799227 DOI: 10.1099/mic.0.066787-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In response to antibiotics, bacteria activate regulatory systems that control the expression of genes that participate in detoxifying these compounds, like multidrug efflux systems. We previously demonstrated that the BaeSR two-component system from Salmonella enterica serovar Typhimurium (S. Typhimurium) participates in the detection of ciprofloxacin, a bactericidal antibiotic, and in the positive regulation of mdtA, an efflux pump implicated in antibiotic resistance. In the present work, we provide further evidence for a role of the S. Typhimurium BaeSR two-component system in response to ciprofloxacin treatment and show that it regulates sodA expression. We demonstrate that, in the absence of BaeSR, the transcript levels of sodA and the activity of its gene product are lower. Using electrophoretic mobility shift assays and transcriptional fusions, we demonstrate that BaeR regulates sodA by a direct interaction with the promoter region.
Collapse
Affiliation(s)
- P Guerrero
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - B Collao
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - R Álvarez
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - H Salinas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - E H Morales
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, USA.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, USA
| | - I L Calderón
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - F Gil
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
19
|
Collao B, Morales EH, Gil F, Calderón IL, Saavedra CP. ompW is cooperatively upregulated by MarA and SoxS in response to menadione. MICROBIOLOGY-SGM 2013; 159:715-725. [PMID: 23393149 PMCID: PMC3709825 DOI: 10.1099/mic.0.066050-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OmpW is a minor porin whose biological function has not been clearly defined. Evidence obtained in our laboratory indicates that in Salmonella enterica serovar Typhimurium the expression of OmpW is activated by SoxS upon exposure to paraquat and it is required for resistance. SoxS belongs to the AraC family of transcriptional regulators, like MarA and Rob. Due to their high structural similarity, the genes under their control have been grouped in the mar/sox/rob regulon, which presents a DNA-binding consensus sequence denominated the marsox box. In this work, we evaluated the role of the transcription factors MarA, SoxS and Rob of S. enterica serovar Typhimurium in regulating ompW expression in response to menadione. We determined the transcript and protein levels of OmpW in different genetic backgrounds; in the wild-type and Δrob strains ompW was upregulated in response to menadione, while in the ΔmarA and ΔsoxS strains the induction was abolished. In a double marA soxS mutant, ompW transcript levels were lowered after exposure to menadione, and only complementation in trans with both genes restored the positive regulation. Using transcriptional fusions and electrophoretic mobility shift assays with mutant versions of the promoter region we demonstrated that two of the predicted sites were functional. Additionally, we demonstrated that MarA increases the affinity of SoxS for the ompW promoter region. In conclusion, our study shows that ompW is upregulated in response to menadione in a cooperative manner by MarA and SoxS through a direct interaction with the promoter region.
Collapse
Affiliation(s)
- B Collao
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - E H Morales
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - F Gil
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - I L Calderón
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
20
|
Sullivan JT, Brown SD, Ronson CW. The NifA-RpoN regulon of Mesorhizobium loti strain R7A and its symbiotic activation by a novel LacI/GalR-family regulator. PLoS One 2013; 8:e53762. [PMID: 23308282 PMCID: PMC3538637 DOI: 10.1371/journal.pone.0053762] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Mesorhizobium loti is the microsymbiont of Lotus species, including the model legume L. japonicus. M. loti differs from other rhizobia in that it contains two copies of the key nitrogen fixation regulatory gene nifA, nifA1 and nifA2, both of which are located on the symbiosis island ICEMlSym(R7A). M. loti R7A also contains two rpoN genes, rpoN1 located on the chromosome outside of ICEMlSym(R7A) and rpoN2 that is located on ICEMlSym(R7A). The aims of the current work were to establish how nifA expression was activated in M. loti and to characterise the NifA-RpoN regulon. The nifA2 and rpoN2 genes were essential for nitrogen fixation whereas nifA1 and rpoN1 were dispensable. Expression of nifA2 was activated, possibly in response to an inositol derivative, by a novel regulator of the LacI/GalR family encoded by the fixV gene located upstream of nifA2. Other than the well-characterized nif/fix genes, most NifA2-regulated genes were not required for nitrogen fixation although they were strongly expressed in nodules. The NifA-regulated nifZ and fixU genes, along with nifQ which was not NifA-regulated, were required in M. loti for a fully effective symbiosis although they are not present in some other rhizobia. The NifA-regulated gene msi158 that encodes a porin was also required for a fully effective symbiosis. Several metabolic genes that lacked NifA-regulated promoters were strongly expressed in nodules in a NifA2-dependent manner but again mutants did not have an overt symbiotic phenotype. In summary, many genes encoded on ICEMlSym(R7A) were strongly expressed in nodules but not free-living rhizobia, but were not essential for symbiotic nitrogen fixation. It seems likely that some of these genes have functional homologues elsewhere in the genome and that bacteroid metabolism may be sufficiently plastic to adapt to loss of certain enzymatic functions.
Collapse
Affiliation(s)
- John T. Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven D. Brown
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Clive W. Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
21
|
Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella Typhimurium in response to sodium hypochlorite: down-regulation of rob by MarA and SoxS. Arch Microbiol 2012; 194:933-42. [PMID: 22752112 DOI: 10.1007/s00203-012-0828-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
To survive, Salmonella enterica serovar Typhimurium (S. Typhimurium) must sense signals found in phagocytic cells and modulate gene expression. In the present work, we evaluated the expression and cross-regulation of the transcription factors MarA, Rob, and SoxS in response to NaOCl. We generated strains ΔsoxS and ΔmarA, which were 20 times more sensitive to NaOCl as compared to the wild-type strain; while Δrob only 5 times. Subsequently, we determined that marA and soxS transcript and protein levels were increased while those of rob decreased in a wild-type strain treated with NaOCl. To assess if changes in S. Typhimurium after exposure to NaOCl were due to a cross-regulation, as in Escherichia coli, we evaluated the expression of marA, soxS, and rob in the different genetic backgrounds. The positive regulation observed in the wild-type strain of marA and soxS was retained in the Δrob strain. As in the wild-type strain, rob was down-regulated in the ΔmarA and ΔsoxS treated with NaOCl; however, this effect was decreased. Since rob was down-regulated by both factors, we generated a ΔmarA ΔsoxS strain finding that the negative regulation was abolished, confirming our hypothesis. Electrophoretic mobility shift assays using MarA and SoxS confirmed an interaction with the promoter of rob.
Collapse
|
22
|
Morales EH, Calderón IL, Collao B, Gil F, Porwollik S, McClelland M, Saavedra CP. Hypochlorous acid and hydrogen peroxide-induced negative regulation of Salmonella enterica serovar Typhimurium ompW by the response regulator ArcA. BMC Microbiol 2012; 12:63. [PMID: 22545862 PMCID: PMC3358236 DOI: 10.1186/1471-2180-12-63] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/30/2012] [Indexed: 11/29/2022] Open
Abstract
Background Hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) are reactive oxygen species that are part of the oxidative burst encountered by Salmonella enterica serovar Typhimurium (S. Typhimurium) upon internalization by phagocytic cells. In order to survive, bacteria must sense these signals and modulate gene expression. Growing evidence indicates that the ArcAB two component system plays a role in the resistance to reactive oxygen species. We investigated the influx of H2O2 and HOCl through OmpW and the role of ArcAB in modulating its expression after exposure to both toxic compounds in S. Typhimurium. Results H2O2 and HOCl influx was determined both in vitro and in vivo. A S. Typhimurium ompW mutant strain (∆ompW) exposed to sub-lethal levels of H2O2 and HOCl showed a decreased influx of both compounds as compared to a wild type strain. Further evidence of H2O2 and HOCl diffusion through OmpW was obtained by using reconstituted proteoliposomes. We hypothesized that ompW expression should be negatively regulated upon exposure to H2O2 and HOCl to better exclude these compounds from the cell. As expected, qRT-PCR showed a negative regulation in a wild type strain treated with sub-lethal concentrations of these compounds. A bioinformatic analysis in search for potential negative regulators predicted the presence of three ArcA binding sites at the ompW promoter region. By electrophoretic mobility shift assay (EMSA) and using transcriptional fusions we demonstrated an interaction between ArcA and one site at the ompW promoter region. Moreover, qRT-PCR showed that the negative regulation observed in the wild type strain was lost in an arcA and in arcB mutant strains. Conclusions OmpW allows the influx of H2O2 and HOCl and is negatively regulated by ArcA by direct interaction with the ompW promoter region upon exposure to both toxic compounds.
Collapse
Affiliation(s)
- Eduardo H Morales
- Laboratorio de Microbiología Molecular, Facultad Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
23
|
Snoussi S, May AE, Coquet L, Chan P, Jouenne T, Landoulsi A, Dé E. Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern. Proteome Sci 2012; 10:6. [PMID: 22304719 PMCID: PMC3292939 DOI: 10.1186/1477-5956-10-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/03/2012] [Indexed: 12/29/2022] Open
Abstract
Background Salmonella enterica serovar Hadar (S. Hadar) is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments. Results The present study investigated the adaptation of S. Hadar under the effect of acute static magnetic field exposure (200 mT, 9 h) and the impact on the outer membrane protein pattern. Via two-dimensional electrophoresis (2-DE) and LC-MS/MS spectrometry, we compared the proteome of enriched-outer membrane fraction before and after exposure to a magnetic field. A total of 11 proteins, displaying more than a two-fold change, were differentially expressed in exposed cells, among which 7 were up-regulated and 4 down-regulated. These proteins were involved in the integrity of cell envelope (TolB, Pal), in the response to oxidative stress (OmpW, dihydrolipoamide dehydrogenase, UspF), in the oxidative stress status (bacterioferritin), in virulence (OmpX, Yfgl) or in motility (FlgE and UspF). Complementary experiments associated the down-regulation of FlgE and UspF with an alteration of swarming, a flagella-driven motility, under SMF. Furthermore, the antibiotic disc diffusion method confirmed a decrease of gentamicin susceptibility in exposed cells. This decrease could be partly associated with the up-regulation of TolC, outer membrane component of an efflux pump. OmpA, a multifunctional protein, was up-regulated. Conclusions SMF (200 mT) seems to maintain the cell envelope integrity and to submit the exposed cells to an oxidative stress. Some alterations suggest an increase of the ability of exposed cells to form biofilms.
Collapse
Affiliation(s)
- Sarra Snoussi
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Bizerte, Tunisie.
| | | | | | | | | | | | | |
Collapse
|
24
|
Villarreal JM, Hernández-Lucas I, Gil F, Calderón IL, Calva E, Saavedra CP. cAMP receptor protein (CRP) positively regulates the yihU-yshA operon in Salmonella enterica serovar Typhi. MICROBIOLOGY-SGM 2010; 157:636-647. [PMID: 21148209 DOI: 10.1099/mic.0.046045-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the aetiological agent of typhoid fever in humans. This bacterium is also able to persist in its host, causing a chronic disease by colonizing the spleen, liver and gallbladder, in the last of which the pathogen forms biofilms in order to survive the bile. Several genetic components, including the yihU-yshA genes, have been suggested to be involved in the survival of Salmonella in the gallbladder. In this work we describe how the yihU-yshA gene cluster forms a transcriptional unit regulated positively by the cAMP receptor global regulator CRP (cAMP receptor protein). The results obtained show that two CRP-binding sites on the regulatory region of the yihU-yshA operon are required to promote transcriptional activation. In this work we also demonstrate that the yihU-yshA transcriptional unit is carbon catabolite-repressed in Salmonella, indicating that it forms part of the CRP regulon in enteric bacteria.
Collapse
Affiliation(s)
- J M Villarreal
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - F Gil
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I L Calderón
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - E Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
25
|
Blain KY, Kwiatkowski W, Choe S. The functionally active Mistic-fused histidine kinase receptor, EnvZ. Biochemistry 2010; 49:9089-95. [PMID: 20849081 DOI: 10.1021/bi1009248] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mistic is a small Bacillus subtilis protein which is of current interest to the field of structural biology and biochemistry because of its unique ability to increase integral membrane protein yields in Escherichia coli expression. Using the osmosensing histidine kinase receptor, EnvZ, an E. coli two-component system, and its cytoplasmic cognate response regulator, OmpR, we provide the first evidence that a Mistic-fused integral membrane protein maintains functionality both in vitro and in vivo. When the purified and detergent-solubilized receptor EnvZ is fused to Mistic, it maintains the ability to autophosphorylate on residue His(243) and phosphotransfers to residue Asp(55) located on OmpR. Functionality was also observed in vivo by means of a β-galactosidase assay in which RU1012 [Φ(ompC-lacZ)10-15, ΔenvZ::Km(r)] cells transformed with Mistic-fused EnvZ led to an increase in downstream signal transduction events detected by the activation of ompC gene expression. These findings illustrate that Mistic preserves the functionality of the Mistic-fused cargo protein and thus provides a beneficial alternate approach to study integral membrane proteins not only by improving expression levels but also for direct use in functional characterization.
Collapse
Affiliation(s)
- Katherine Y Blain
- Structural Biology Laboratory, The Salk Institute, La Jolla, California 92037, United States
| | | | | |
Collapse
|
26
|
Bouchal P, Struhárová I, Budinská E, Sedo O, Vyhlídalová T, Zdráhal Z, van Spanning R, Kucera I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1350-8. [PMID: 20116460 DOI: 10.1016/j.bbapap.2010.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 01/05/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
The switch from aerobic to anaerobic respiration in the bacterium Paracoccus denitrificans is orchestrated by the action of three FNR-type transcription regulators FnrP, NNR and NarR, which are sensors for oxygen, nitric oxide and nitrite, respectively. In this work, we analyzed the protein composition of four strains (wild type, FnrP-, NNR- and NarR-mutant strains) grown aerobically, semiaerobically and semiaerobically in the presence of nitrate to discover the global role of FNR-family transcription regulators using proteomics, with data validation at the transcript and genome levels. Expression profiles were acquired using two-dimensional gel electrophoresis for 737 protein spots, in which 640 proteins were identified using mass spectrometry. The annotated 2-D proteome map provided the most comprehensive coverage of P. denitrificans proteome available to-date and can be accessed on-line at http://www.mpiib-berlin.mpg.de/2D-PAGE/. Our results revealed several types of regulation under the conditions tested: (1) FnrP-controlled regulation of nitrous oxide reductase, UspA and OmpW as confirmed at protein, transcript and DNA level (position of FNR boxes). (2) Proteins regulated via additional regulators, including proteins involved in NNR and NarR regulons: nitrate reductase beta-subunit, TonB-dependent receptors, nitrite reductase, a TenA-type transcription regulator, and an unknown protein with an alpha/beta hydrolase fold. (3) Proteins whose expression was affected mainly by the growth condition. This group contains SSU ribosomal protein S305 / sigma(54) modulation protein, and two short-chain reductase-dehydrogenase proteins.
Collapse
Affiliation(s)
- Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|